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Abstract

The compound energy formalism for solution phases with sublattices is very flexible and thermodynamic models for a large variety of
phases have been constructed within this formalism. The range of applications is reviewed and the methods of handling various problems
are examined. Recent developments including treatments of short range order within the compound energy formalism are reviewed.
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1. Introduction

Ever since the thermodynamic treatments of lattice
defects in stoichiometric phases by Wagner and Schottky
in 1930 [1] and Olander in 1932 [2] and of interstitial
solutions by Johansson in 1937 [3], it has been realized
that an adequate description of the properties of solution
phases with sublattices must take the existence of the
sublattices into account. Initially, most of the interest was
focused on low contents of defects or interstitials but the
need to cover the whole range of composition has grown
as an effect of the CALPHAD approach which started by
the introduction of the concept ‘lattice stability’ [4] in
order to describe the whole composition range for substitu-
tional solutions. The concept of ‘compound energy’ plays
the same role for solution phases with sublattices as ‘lattice
stability’ plays for substitutional solutions.

There have been many efforts to develop physical
models of the interactions between atoms in sublattice
phases, e.g. the Bragg—Williams model [5]. The compound
energy formalism started [6] as a purely mathematical
method, based on an analytical expression for the Gibbs
energy using terms of increasing powers of the mole
fractions of atoms within the individual sublattices, so-
called ‘site fractions'. In addition, random mixing within
each sublattice was assumed when constructing the terms
for the constitutional entropy. It is thus the natural
extension of the regular solution model with higher power
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terms and it reduces to that model when all the sites in all
but one of the sublattices are vacant.

The compound energy formalism has been applied to the
modelling of a large variety of phases and methods have
been developed to treat different situations. These methods
will now be reviewed and examined.

2. Definition of the compound energy formalism

The compound energy formalism [6—9] was constructed
in order to describe models of the thermodynamic prop-
erties of phases with two or more sublattices which show a
variation in composition, i.e. belonging to the class of
solution phases. The structure of a phase is represented
simply by the formula, e.g. (A,B),(D,E,F), where A and B
mix on the first sublattice and D, E and F mix on the
second one. The coefficients k and | are the stoichiometric
coefficients and one mole of formula units thus contains
k+I moles of atoms. The general notation for the stoichio-
metric coefficients will be n® where the superscript s
defines the sublattice. The constitution of the phase is
described by the site fractions, y;, etc. Thus, the summa-
tion over each sublattice yields 2y;=1, etc. It should be
noted that J can represent any type of species, i.e. atom,
molecule, ion or vacancy. A certain species in a certain
sublattice is regarded as a ‘constituent’. A component | of
a phase can occur as a constituent in more than one
sublattice, i.e. as more than one constituent of the phase. It
may even occur in more than one constituent in the same
sublattice. As an example, the component Fe may occur as
Fe"? and Fe"® and O may occur in SO, and SO, *. When
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al the condtituents are single atoms, simple ions or
vacancies, the number of atoms per formula unit will be
2ns(l_y\sla)-

In the limits there will be only one species on each
sublattice, and stoichiometric compounds are thus defined
as ‘end-members of the solution phase’ or simply ‘end-
member compounds’, e.g. A,D,. For simplicity, the symbol
for the Gibbs energy of an end-member will be given by
giving the element on each sublattice but excluding the
stoichiometric coefficients, e.g. °G,.,. The basis of the
compound energy formalism is the assumption that, in
addition to a term for the ideal entropy of mixing,

— S™T =RT 33 n'y5 In(y?) (1)

constructed under the assumption of random mixing within
each sublattice, there is a surface of reference (s.r.) defined

by

G;rl = EOGendl_[yi (2)
where the summation covers all the end-members and the
product ITy] contains one site fraction from each sublattice
and they are identified by the constituents in the end-
member. °G,,, is the Gibbs energy of one mole of formula
units of the compound representing the end-member. The
quantity 3(ITy5) is unity and G} thus represents a
weighted average over al the end-members. For a simple
case Eqg. (2) may be justified by the Bragg and Williams
model, which was based on Bethe's proposal of pair-wise
bond energies [10], but simplified by replacing Bethe's
quasi-chemical approach with random mixing within each
sublattice [5]. It is more difficult to justify when different
sites have different coordination numbers. The name
‘compound energy model’ was introduced [9] when it was
proposed that Eq. (2) could be used in such cases as well.
The name ‘compound energy formalism’ was later intro-
duced as a more general concept, the idea being that a
large variety of models with different physical back-
grounds may be expressed in this formalism. A great
advantage of a common formalism is that one can develop
a general type of software alowing new models to be
developed and directly applied as long as they fit into the
same formalism. When that is true, it is sufficent to define
a model by giving a formula showing the constituents in
each sublattice and the number of sites, eg.
(A,B)k(D,E,F)| .

Numerical values of °G_,, can only be given relative to
standard states (stst) of the components |. Using such states
one can define the Gibbs energy of formation as

Afo(send = o(3end - EOG ;5151 Ems (3)

where the first summation covers all the components |
present in the end-member and m® is the number of | atoms
present in sublattice s of the end-member. It should be
noted that, when °G,,,, from Eq. (3) is inserted in Eq. (2),
one gets YA, °G,,I1y; but aso an expression we can give

in the following condensed form 3°G;* Sy;m® where J
represents all constituents containing component |.

When there are no complex congtituents, Jis identical to
| and m® is identical to n®, and for each component | one
obtains a term °G}'* Sy’n® where the summation covers all
the sublattices containing the component | as a constituent.
The content of a component | per mole of formula units
would then be related to the mole fraction of I, x,, through
the number of atoms per formula unit,

20 =x 21— yy). (4)

What remains in excess of these contributions to the
Gibbs energy is usually regarded as excess terms and they
are described with a generalized regular solution expres-
sion,

EGm = Hyj zy:aLA,B:D:G .
+10y; 22 Ve Yolasoes. . T - (5)

The commas in the subscripts separate constituents
within a sublattice and the colons separate constituents in
different sublattices. As before, the products cover one
congtituent on each sublattice. In the first group of terms,
the summation covers a second constituent in one sublat-
tice at a time and the L parameters are thus identified. In
the second group of terms, the double summation covers
additional constituents in two sublattices. The latter param-
eters are often caled ‘reciprocal parameters. The L
parameters could depend on composition and Redlich—
Kister terms in site fractions are recommended [11]. After
rearrangement, the complete expression per mole of for-
mula units would thus be

Gm - Ens(l - y;s/a) EXIOG |STST = EAfOG'endl_ij
+RT 2 2n%s In(yS) + 5G,,. (6)

The left hand side represents the mixing Gibbs energy,
“"Gm. When each component only occurs as a single
species and it only resides in one sublattice, Eq. (4) could
be inverted and each y; could be calculated directly from
the corresponding x,. However, in the general case there
are more independent site fractions than mole fractions and
for a given composition one would have to minimize G,
with respect to all the site fractions in order to find the
equilibrium values of all the site fractions. The relations
given by Eqg. (4) would then have to be used as auxiliary
conditions. For phases containing ions it is also necessary
to use the condition of electroneutrality as an auxiliary
condition. This kind of calculation is available in programs
for thermodynamic calculations, e.g. Thermo-Calc [12]. It
is only necessary to define the formula for the phase and
then to give the model parameters, i.e. al the A,°G and L
guantities, unless they are aready stored in a database
directly accessible for the program.



M. Hillert / Journal of Alloys and Compounds 320 (2001) 161-176 163

The bond energy model is constructed for phases where
atoms in different sublattices have the same coordination
number and it can then be brought into the compound
energy formalism. On the other hand, it is not evident how
a bond energy model can be formulated when the coordi-
nation number is different for different sites but the
compound energy formalism, being a purely mathematical
model, can be applied directly to such cases as well.
However, as discussed in Section 7, one may then need to
consider the introduction of excess terms.

3. A simple reciprocal solution phase

In order to illustrate the compound energy formalism it
is convenient to use the simple case (A,B),(D,E),. All
possible compositions can be represented on a square with
the axes y, and y{. It may be called ‘ composition square'.
Even though there are four end-members, it is evident that
any composition can be obtained by mixing three end-
members. In particular, the center of the square may be
obtained by mixing equal amounts of either A:D and B:E
or A:E and B:D. This is why one cdls (A,B),(D,E), a
reciprocal solution phase.

One can plot the surface of reference perpendicular to
the composition sguare, Fig. 1, and this would approximate
the whole Gibbs energy if there is no excess term and the
temperature is low enough to make the ideal entropic
contribution negligible. It is evident that an aloy of the
central composition would decrease its Gibbs energy by
separating into two parts, one consisting of A:D and the
other of B:E. The driving force for this demixing is
0.25A°G, g. ¢ Where

AoGA,B:D,E =°Gpe +°Gg.p = “Gap — “Cge (79

It can also be given as

AOGA,B:D,E =A°Gpe + A°Ggp — A°Grp — A°Gpe
(7b)

°GaD 1

A:D BD

Fig. 1. The surface of reference for the Gibbs energy of a phase
(A,B),(C,D),, according to the compound energy formalism, plotted
above the composition square.

because each standard state is eliminated. We shall regard
this as the ‘reaction parameter’.

At readlistic temperatures the ideal entropic contribution
will modify the tendency of demixing and the miscibility
gap will close at some critical temperature. By symmetry
reasons, the critical point, i.e. the point of maximum on the
miscibility gap, will fal in the center in this simple case
and its temperature can be found as follows. Start with the
molar Gibbs energy expression,

Gn= ytA y; “Gap T Y:sy; °Gg.p T ytA yE ‘G
+YaY °Gae + RT 2 2 y5In(y) (8)

For variations parallel to the A:D—B:E diagonal we have
dy, = —dy, = —dyl =dyg and obtain

dZGm/d(YE)Z =2°Gyp — 2°G.p — 2°Gp g + 2°Gy ¢
+RT, X 2(1ly) =0 9)

For symmetry reasons we can insert al y,=1/2 at the
critical (consolute) point, obtaining

Te= AOG‘A,B:D,E/4R (10)

If A°G, g.p e iS negative, one would obtain an identical
result for a miscibility gap paralel to the A:E-B:D
diagonal. It is thus typical of reciprocal solution phases
that there is aways a tendency of demixing in one
direction or the other.

4. Chemical potentials

Except for the very simplest case, it would be very
difficult to carry out numerical calculations without a
computer program. The program should be able to perform
calculations of al thermodynamic properties and in publi-
cations there would be no need to present equations except
for the Gibbs energy which is used for storing the basic
thermodynamic information. Nevertheless, it may be of
interest here to discuss the analytical calculation of chemi-
ca potentials. For a phase with sublattices they are
primarily defined for compounds, the end-members, and
not for components or constituents. See [13], for instance.
The chemical potential for a compound A, D,G,,, would be
obtained as

IU’A:D:G = Gm + aGm/6ytA + aGm/ayg + aGm/ay\é
= 2 2 Y506,/ y5) (12)

By definition, this quantity is related to the chemical
potentials of the constituents by

Moo = K + 1up + Mug (12)
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5. Vacancies

There are many cases where vacancies enter into one of
the sublattices. The corresponding end-members will then
be represented by compounds with an empty sublattice. In
the simple case of two sublattices these compounds will be
A Va, etc. which is identical to k atoms of pure A in the
related structure, i.e. with all the sites in the second
sublattice empty. It may be a stable, metastable or unstable
state of the element. In this case, the chemical potential of
‘the compound’ A, Vg is identical to ku, because the
chemical potential of vacancies is zero at so-called thermal
equilibrium. It is also possible to obtain the chemical
potential of a congtituent in the sublattice with vacancies
using Eq. (12) for a phase with two sublattices,

Map ~ Macva = Kpta + Lap = Ko = Tty = lpp = Ly,
~ 1o (13)

If the practical interest in the phase lies in the region of
low content of all the atoms in the sublattice with
vacancies, then one talks about an interstitial solution, in
particular if there are only two sublattices, one for substitu-
tional alloy elements and one for interdtitials.

Fig. 2 illustrates all possible congtitutions for the simple
case of (A,B),(BVa),. A constant composition is ho longer
limited to a point but can exist on a straight line. Along
that line the constitution, i.e. the distribution over different
sublattices, varies. Thus, the square is no longer a true
composition sguare but for the sake of simplicity we shall
retain that name. The full line holds for the 50/50
composition and has a dope of 2. This is an example

AV / -
a y | B:Va
// /
/ //
/
by /
y#a /
/
/
/
A:B [ B:B
yé —

Fig. 2. The so-called composition square for a phase (A,B),(BVa),,
representing all possible congtitutions. All constitutions on the full line
can form from the same composition, 50% A, 50% B. The dashed lines
hold for two other compositions.

where the equilibrium congtitution can only be found by
minimizing G,,.

6. Anti-sites and ordering

One talks about anti-sites when an element, that normal-
ly resides in one sublattice, dissolves to a lower extent in
another sublattice. That model can be directly included in
the compound energy formalism. Let us consider a binary
phase with two sublattices where A prefers the first one
and B the second one, a fact indicated by the positions and
the use of bold letters in the example (A,B),(B,A),.
(Except for this purpose, the recommendation to arrange
the constituents of each sublattice in alphabetical order will
be followed in the present review. It has an effect on the
signs of Redlich—Kister parameters) In general, the
amount of anti-site atoms will increase at increasing
temperature due to the effect of the configurational en-
tropy. The phase will be more and more disordered. We
shall now examine if there is an order-disorder transition at
some critical temperature where the phase disorders com-
pletely. The material balance for the phase (A,B),(B.A),
requires that an aloy of given composition fals on a line
with the dlope 1/2 in Fig. 3. The full line holds for the
50/50 composition. The completely disordered states
would be represented by the intersection between the line
for each aloy composition and the diagonal A;A,-B,B,
(dotted line) because there yp =1—vyy, i.e. yy. It is thus
necessary that the G, curve in the section for constant
composition can have a minimum at that intersection,

B:A

B:B

|
yB

Fig. 3. The so-cadled composition square for a phase (A,B),(B,A).,,
representing al possible congtitutions. Each one of the full and dashed
lines represents possible constitutions for a certain composition. In this
case the lines are paralel. The full line holds for 50% A, 50% B.
Intersections with the dotted line represent completely disordered cases.
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otherwise the completely disordered state could never be
stable. For the general case, (A,B)y(A,B),, the compound
energy formalism yields

G =YaYa"Gaa + YaVe “Gae + YaYa “Geia
+Y5Ys “Ga.p
+RTP 2y In(ys) + RTQ 2 y5 In(y$) + °G,,  (14)
For variations of the site fractions under constant com-

position we have Pdy, = —Pdy, = —Qdyx =Qdys
and from Eq. (14) we get by neglecting °G, ,

Q- aGm/aYL =(Qya — PytA)OGA:A +(Qyg + PytA)OGA:B
—(Qya + PYL)OGB:A —(Qys — PYL)OGB:B
+ RTQP[1 + In(y,) — 1 —In(yg)]
+ RTQP[—1—In(y,) + 1+In(yg)] (15)

For a disordered state y\, =ya =x, and y; =ys =X and
the expression must be zero for aminimum in G, yielding

Q- 9G,, /0y, = (Q — P)X,°G,.» + (QXg + PX,)°Gy 5
- (QXA + PXB)OGB:A - (Q - P)XB OGB:B
=0 (16)

In order for this to occur over a range of compositions,
two conditions must be fulfilled,

(Q—=P)°Gppa T PG, g —Q°Gpa =0 (17)
Q°Gyg —P°Ggp —(Q—P)°Ggz =0 (18)

They can be transformed into the following two con-
ditions

‘Cag = (P°Gua +Q°Ggg)/(P+ Q) (19)
°Cg.a =(Q°Gyp T P°Ggp)/(P+Q) (20)

These expressions imply that the energies of the com-
pounds A.B, and B,A, should be exactly equa to the
weighted averages of pure A and B in the states of A A,
and BB, This can hardly be expected. Consequently, one
should not expect that such a phase can disorder complete-
ly except by the action of G, in Eq. (14) which was later
neglected and did not show up in Egs. (19) and (20). The
effect of the excess term will be described in Section 7 but
we can aready conclude that the coefficients in ©G,, must
be closely related to the four compound energies in order
for this to occur. Otherwise it would be extremely unlikely
that their combined effect should give a minimum of G,
exactly for the disordered state. A case of such arelation is
the L1, structure which may be described as A;B,. It may
disorder completely to the A1 structure because the excess
term is due to nearest neighbour bonds within the second

sublattice which are exactly like those between the two
sublattices.

There is an important exception to the above conclu-
sions. For the case P =Q, two of the terms in Eq. (16)
become zero and the equation can be satisfied by a single
condition, °G,.; =°Gg.,, which would occur if the sites in
both sublattices were identical. For such structures we can
thus expect an order—disorder transition at a temperature
between those where G, has a minimum or a maximum
for the disordered state. That temperature is thus obtained
by putting the second derivative of G, to zero. For the
50/50 composition we obtain a result similar to Eq. (10),

Ty = AOGA,B:B,A/4R (21)

where A°G, g.g o =°Ga.n +°Gg.g —°Ga.g — “Gg.a- With this
model, the compound energy formalism has thus given the
same result as the Bragg-Williams treatment of order—
disorder in the B2 structure with the interaction energy
g = —A°G, 5.5 4 /22N where N* is the Avogadro num-
ber and z is the coordination number, being 8 for the B2
structure.

In order to indicate if an order—disorder transition is
crystallographically possible between two sublattices, it
has been proposed [14] that they should be marked with
the same type of parenthesis in the formula, as in the
following example, [A,B][A,B](D,E). In that case there are
three sublattices at low temperatures but there could be
complete disorder between the first two, if the temperature
is increased above a transition temperature. In view of the
above discussion, one would normally expect the number
of sites to be the same in the two sublattices taking part in
an order - disorder transition. In the following more
complicated example, [A,B][A,B]{D,EXD,E}, there are
four sublattices at low temperatures but there could be
complete disorder between the first two and also between
the last two. It would then be an interesting question
whether there will be two different transition temperatures
for the two order-disorder reactions or a common one. In
the compound energy formalism, the answer would be
found by examining the Gibbs energies of the end-mem-
bers. For instance, if °G,.5.p.e 8Nd °G,.5.¢.p have different
values, then ordering on the first two sublattices would be
affected by ordering on the last two and they would have a
common transition temperature.

7. Therole of excess terms

The terms of the surface of reference in Eq. (2)
represent interactions between atoms on different sublat-
tices because they contain site fractions from different
sublattices. The excess terms in the first summation of Eq.
(5) contain two site fractions from the same sublattice and
would thus be used to represent interactions between atoms
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in the same sublattice. For most models one would
primarily hope that excess terms are small and, as a first
approximation, one would neglect them. This may be
justified if all the nearest neighbours to an atom are in
other sublattices. The terms in the surface of reference
would then be the most important ones. However, already
when the name ‘compound energy model’ was proposed
[9], it was emphasized that an excess term should be added
in case some of the nearest neighbours to an atom are in
the same sublattice as the atom itself. This problem was
again considered in a more recent discussion of the
properties of the compound energy model [15] and the
model parameters were there evaluated by counting the
bonds and multiplying with bond energies. This may thus
be regarded as a way of expressing the Bragg—-Williams
model in the compound energy formalism. In the special
case of L1, (e.g. AINi;), where al the atoms have the
same coordination number but two thirds of the nearest
neighbours to atoms in the second sublattice are in the
same sublattice, the compound energy formalism with two
sublattices yielded

MGm = ytAy; A°Gyp + Y:ay,lj\ Ai°Gg.a
+RT[y, In(Ya) +Ys IN(ys) + 3ya In(y))
+3y5 In(Ye) ]+ YaYaYelans + YeYaYeloae  (22)

A°G,., and A;°Gg., disappeared because the standard
states were chosen as pure A or B of the same structure.
By counting the bonds within the second sublattice and
assuming constant bond energies the following relations
were obtained.

Ai°Gpg = A°CGgp = N* Zipg (23)
Lang=Lleas= (nu/nt —1)A°Gag =2A°Gyp (24)

because n'=1 and n"=3 for AINi,. Thus, there would be
only one independent model parameter, represented by
A°G, .5 Or 1,5, both of which are negative when there is a
tendency for ordering. This description of the Bragg-—
Williams model using two sublattices is equivalent to the
ordinary treatment of the Bragg—Williams model for the
L1, phase using four equivalent sublattices without inter-
actions within any of them. It may be added that the
relations given by Egs. (23) and (24) would alow G, to
have a minimum in the disordered state, as discussed in
Section 6.

This has been an example of the advantage of combin-
ing the compound energy formalism, which is purely
mathematical, with a physica model in order to derive
useful relations between various model parameters.

Another way to handle the presence of nearest neigh-
bour bonds within a sublattice would be to avoid such a
situation by splitting that sublattice, if nearest neighbour
bonds within all sublattices can thus be avoided. Evidently,
that is what the Bragg—Williams model does with four

sublattices in the case of L1,. In order to use the
compound energy formalism in that way, one must derive
the relations between OGA:A:A:B7 OGA:A:B:B and OGA:B:B:B in
terms of the bond energies. As shown, e.g. by Sundman
and Mohri [16],

A°Guans = (3/4) A°Gupgs =A°Cagrs
= 12N"y,, (25)

The two four-sublattice treatments, the Bragg—Williams
treatment and the one based on the compound energy
formalism, are then identical and they are more genera
than the two-sublattice model. They are very useful for the
Au—Cu system where three ordered phases based on the
f.c.c. structure appear, Au,Cu and AuCu, with the L1,
structure and Au,Cu,; with the L1, structure. However,
they need further refinement in order to give redistic
results [17].

If all nearest neighbour bonds are taken care of in one of
these ways, the remaining part of EGm would primarily
represent contributions from next-nearest neighbour bonds.
It should be readized that there are cases where they are
also quite important. In the case of the B2 structure, there
are eight nearest neighbours in the other sublattice but six
neighbours in the same sublattice and they are only 15%
further away. The energies of such bonds could then have
an effect on the structure of the ordered phase.

Ansara, Sundman and Willemin [18] recently discussed
a formal way of predicting an order—disorder transition
starting from a description of the ordered phase, using
excess terms. They pointed out that a disordered state can
be stable only if the Gibbs energy, as function of the
distribution over different sublattices under constant com-
position (e.g. as function of yg for a binary two-sublattice
phase) is a point of extremum for the disordered arrange-
ment (i.e. a y,=Yys=Xg). As aready mentioned in
Section 6, this condition will directly give constraints
relating the model parameters to each other and they
require excess terms if the number of sites on the sublat-
tices are different. This will now be worked out in detail.

By introducing the regular solution parameters, °L, ..
Lage ‘Laag and °Lg, g, three constraints will be
obtained using the method proposed by Ansara et al. They
can be written as follows,

OLA:A,B = (OL/-\,B:A + AfOGB:A)(nu/nt) —A°Gyg (26)

OLB:A,B = OLA,B:A(nu/nt) +A° A:Bnu/(nu - nt)
+ A°Gg A [(N%)* = 3n'n" + (n")?]/n'(n" — n')

(27)

o — O
LA,B:B - I-A,B:A

+(A°Gg.a — A°Gu )" —2n)/(n" — ) (28)
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Without the °L parameters these equations can be
simultaneously satisfied for n'=n", only. The same conclu-
sion was reached in Section 6 where n' and n" were
denoted by P and Q. Such a case would be the B2 - A2
transition. In order to predict an order—disorder transition
for n'sn", it is necessary to introduce all four regular
solution parameters but only one of them may be regarded
as an independent parameter, e.9. °L, g.5. If it is assumed
that the interactions within the second sublattice are
independent of the occupancy of the first one, i.e. °Lg., g =
°La.a g, then a combination of Egs. (26) and (27) requires
that A;°Gg., =A;°G,.5, and then Eq. (28) requires that
°Lag.a="Lagg- Thisyields

"Gy =[YaYs T YeYa + YaYs(n' —n')/nT A G,
F[YaYe T Yaya('/n)] °Lyg.a

+RT 2 2 y;In(y3) (29)

Let us now compare with the bond energy model. If
n‘<n", then it is natural to expect that there are no nearest
neighbour bonds within the first sublattice and one may put
*Lag.a @d °L, g5 €qua to zero. In that case the excess
term that has been introduced in order to predict an
order—disorder transition is y,ys(n"/n'—1) A,°G,.. This
is in complete agreement with Eg. (24) which was
obtained by expressing the Bragg—Williams model in the
compound energy formalism [15]. However, the compound
energy model based on Egs. (26)—(28) is less restrictive
since it gives two extra degrees of freedom. First, one does
not need to put A,°Gg., and A;°G,.; equal and, secondly,
one has another degree of freedom when selecting the
values of the independent regular solution parameter. In
addition, one can introduce higher Redlich—Kister terms
but only by obeying special constraints between them.
Those constraints were studied by Ansara et al. [19] for the
L1, structure.

8. Combination of mole fractions and site fractions

In Eg. (6) we used a combination of mole fractions and
site fractions but that fact was later hidden by the
introduction of the mixing Gibbs energy, V'G,,. In fact, it is
used as soon as the Gibbs energy of formation of the
compound, A;°G,,,, is used instead of the absolute value,
°G,,q» Which cannot be given a numerical value without
the use of references. For ordered phases, which require
the use of site fractions, Ansara et al. [19] proposed that it
may sometimes be convenient to use the disordered state
for the same composition as a kind of reference, expressed
in terms of the mole fractions. The remaining part of the
Gibbs energy could then be regarded as the contribution
due to ordering and denoted by AG®“®°™ not to be
confused with the notation G°, which is sometimes used

to represent the total Gibbs energy of the ordered state.
The quantity AG**®™" is expressed in terms of the site
fractions. We shall now discuss this possibility for phases
that occur in an ordered as well as a disordered state.

As shown by Eqg. (6) the properties of a phase with two
or more sublattices and without any complex constituents,
i.e. with J identical to I, can be represented by an
expression

MG (¥]) = 2AGpolly; + RT 2 2n%y? In(y})
+ G (¥}) (30)

This expression may be used for the description of an
ordered phase. On the other hand, it may sometimes
happen that an ordered phase can disorder at a sufficiently
high temperature and the properties of the disordered state
may even have been described before one turns the
attention to the ordered state. One may then like to add a
description that accounts for the change of properties
caused by the ordering. The ordered state may appear at
low temperatures, at different compositions or on adding
an additional element. One would then like to retain the
old description for the disordered state. Ansara et al. [19]
argued that one should then redefine the expression for the
mixing Gibbs energy per mole of formula units,

MGm _ MG::S(XJ X Ens + AGord.contr. (31)
where "G2°(x,) is the mixing Gibbs energy per mole of
atoms in the disordered state and AG*"**°™" represents the
contribution due to ordering of the disordered state,
counted per mole of formula units. It must vanish for the
disordered state which can be accomplished by writing it
as

AGord.contr. _ MGm _ MG?r:s(XI) . Ens
= AG™"(y) = AG™(y; = x,) (32)
where AG®"(y;) is a function to be determined by
optimizing the description of the ordering behaviour, based
on the previous optimization of the disordered state. In Eq.
(32) AG®*°™" has been treated as a function of y; and x,
and the last term makes it vanish for the disordered state.
It is possible to eliminate the x, variables using Eq. (4).
For the case of no vacancies we have

x, = 2,y >n (33)
One would thus obtain

AGord.contr.(yls) _ AGcorr(yls) —AG corr(yls _ znsylslzns)
(34)

and MGm from Eq. (31) could be written as a function of
only site fractions.
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"Gn(¥7) = 20" G, = 1nY}/ 2nY) + AG*(y))
— AG®"(y$ = DnYy¥/ 2N (35)

It may look as if this function is not identica to
MGm(y,S) given by Eq. (30) because they are based on
different optimizations and, although one would hope that
they both describe the real properties of MGm well, they
would not be identical because they are based on different
sets of model parameters. However, as explained in
Section 7, in order to make it possible for an ordered phase
to disorder it is necessary to introduce relations between
the model parameters, i.e. the parameters in Eq. (35). The
sets of independent parameters may thus become identical
for Egs. (30) and (35).

It was recently pointed out by Sundman (B. Sundman,
unpublished work) that it may also be advantageous to
introduce a term depending on the composition and
expressed in terms of the x, variables even if the phase
cannot disorder. He has proposed that this method should
be called ‘partitioning of the Gibbs energy’.

9. Model parameters and optimization parameters

Basicaly, the primary model parameters are the com-
pound energies and their numerical values must be given
relative to a set of standard states for the components, i.e.
as Gibbs energy of formation. See Eq. (3). If the pure
elements appear as end-members of the solution phase
under consideration, then one can use those states as
standard states but other choices may be more convenient
or even necessary, in particular in calculations of equilibria
between different phases where the same standard states
must be used for all phases. In principle, it is permitted to
choose any set of standard states.

When there are two or more sublattices, it may be
convenient to introduce new model parameters instead of
some of the compound energies. This can be illustrated
with the simple reciprocal solution phase (A,B),(D,E),.
Suppose the practical interest in a phase fals in the
neighbourhood of the A:D end-member. It is then conveni-
ent to describe the various compositions using two in-
dependent site fractions, i.e. y;, and yi, and eliminate the
other two by inserting y, =1-y, and yp=1—yg. One
then obtains

MGm =A°Gyp + y:B(AfOGB:D —Ai°Gyp)
+ yE(AfOGA:E —A°Gyp)
- y;a yE(OGA:E + OGB:D - OGA:D - OGB:E)
+RT 2 2y} In(y}) + G, (36)
The first three terms are defined by the three compound

energies A;°G,.g, A°G,.p and A;°Gg.. For dilute solu-
tions one can neglect the fourth term because y;, and yg are

both small but for richer solutions it represents a deviation
from ideal solution behaviour. The coefficient (°G,.c+
°Gg.p —“Ga.p —°Gg.g) Was aready defined by Eq. (7),
using the notation A°G, g, ¢ and it represents the standard
Gibbs energy of the reciprocal reaction A:E+B:D - A:D+
B:E and was called ‘reaction parameter’. It would be more
meaningful to give that parameter than the fourth com-
pound energy, A;°Gg.c. An important characteristic of the
reaction parameter is that its numerical value is indepen-
dent of the choice of standard states. It thus describes
properties of the phase itself. For example, it was already
mentioned in Section 3 that this parameter directly controls
the tendency of demixing and in Section 6 that it controls
the tendency of ordering if there are no excess terms. As a
conseguence, it is convenient to work with the reaction
parameter when optimizing the description of a phase. One
can often make a reasonable first guess of its value, one
can foresee the effect of a change in its value during an
optimization and one can predict when it will have a
negligible influence on the properties and would not need
to be optimized. It is thus strongly recommended that
reaction parameters should be used as ‘optimization pa-
rameters’ in addition to those compound energies that are
needed to describe dilute solutions.

When there are more than two sublattices and more than
two constituents on each one, there may be a large number
of reciprocal subsystems but all their reaction parameters
cannot be included in the set of optimization parameters
because all of them are not independent. It is necessary to
select some of them as the independent ones and include
only those in the set of optimization parameters [20]. As an
example, with two sublattices with m and n constituents,
respectively, there will be m-n end-member compounds
and m-n optimization parameters are needed. One of the
compounds may be regarded as the main one and dilute
solutions in that compound may be described by adding
the energies of all the compounds obtained by substituting
one at a time of the remaining constituents. We have thus
selected 1+ (m— 1) + (n — 1) optimizing parameters and
need m-n—[1+M-1)+n-1D]=(M-1)-(h—1)
more. They should come from the reaction parameters but
their total number is (m—1)!-(n—21)! which may be much
larger.

The strategy for selecting the independent reaction
parameters could be as follows. For each sublattice,
arrange the congtituents in their order of importance judged
by the maximum value of their site fractions. The com-
pounds used to define the model in the compound energy
formalism are obtained by taking one constituent for each
sublattice. The main compound is defined by taking the
first one for each sublattice. The compounds to be used in
the dilute solution approximation are defined by instead
including one at a time of the remaining constituents. For
al these compounds A;°G,,,4 Will be included in the set of
optimization parameters. Then, define a compound by
selecting the second constituent in two of the sublattices,
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and express its compound energy using the reciprocal
system with compounds already selected. This procedure
can be continued to include less and less important
congtituents until all compounds have been covered. For
example, suppose the constituents are aready arranged
according to their importance in the formula
(A,B,C)(D,EF),(GH,l),,. First include A;°G, .. in the
set of optimization parameters in order to represent the
major condtituents, and then A°Ggp.e. A°Gue:
A¢°Ga.piy A°Geipgr At °Garg aNd A°G,.p,, to represent
the minor constituents. Then, define

AfOGB:E:G = AfoGA:E:G + AfoGB:D:G - AfOGA:D:G

- AOGA,B:D,E:G (37)
and include A°G, g.pe.¢ in the set. Next, define
A°Ggpiy = A°Gapn T A°Ggp.g — A°Gaips

- AOGA,B:D:G,H (38)

and include A°G, g .p.c y N the set, etc. The last compound
would be CFl and its energy could be defined using

ATOGC:F:I = AfoGA:F:I + AfoGC:D:I - AfoGA:D:I - AOGA,C:D,F:I
(39)

since A;°G, .., A;°Gc.p, and A;°G, .., have been defined
earlier in the process and their definitions can be inserted.
All the compound energies have thus been defined in terms
of the new set of optimizing parameters which does not
include all possible reaction parameters.

It may often happen that the available experimental
information is not sufficient for a meaningful optimization
of al the optimization parameters. It may then be neces-
sary to use theoretical or empirical methods of estimating
the values of some of them and not let them vary during
the optimization. This method should primarily be applied
at the end of the list of parameters. Often the importance of
a reaction parameter at the end of the list could even be so
smal that any value, e.g. zero, could be used. For a
complicated phase with a very large number of end-
member compounds it may be convenient to put many of
the independent reaction parameters to zero.

Of course, excess terms with regular or Redlich—Kister
parameters should be used only for reciprocal systems at
the beginning of the list of reciprocal systems and only
when there is sufficient experimental information to de-
termine them.

10. lonic crystals

If the congtituents are ions, it is possible that the
compound energy model uses some end-members that are
not neutral. An example would be the solution of NaCl in
CaCl,. It may be described with the formula
(Ca*®Na*),(Cl~*va®),, yidding a diagran somewhat

resembling that for (A,B),(BVa), in Fig. 2. However,
CaCl, would be the only neutral end-member. Instead of
lines for constant composition one now obtains lines for
constant charge, one of which being the neutra line. It
would start from the CaCl, corner and have a slope of 1/2.
Only compositions on the neutral line would be of
practical interest but the model describes the whole square
which may thus be regarded as a true composition square.
When making calculations one must add the condition of
electroneutrality. This is done automatically by existing
software.

The same phenomenon occurs without the action of
vacancies if there are two sublattices for the cations and
they have different valancies, an example being the spinel
phase. It is a double oxide with a divalent and a trivalent
metal. In a normal spinel they prefer different sublattices
and the idea structure would normaly be
(A"?),(E™®),(0?),. However, the cations can go into
anti-site positions, yielding (A™?E"®),(E"%A"?),(07?),.
The constitution can thus vary but only along a neutral line
in the square. See Fig. 4. It should be noticed that in this
case the neutral line represents a single composition AO-
E,O, and the state of equilibrium is obtained by mini-
mizing the Gibbs energy under the condition of electro-
neutrality or constant composition corresponding to AO-
E,O,.

The right-hand end-point on the neutral line in
Fig. 4 represents so-caled  ‘inverse  spinel’,
(E"%),(Es2A;2),(07%), and in some systems it is more
stable than the ‘norma spinel’. If one adds a second
trivalent metal, the formula would be
(ATETF ) (ETPFAT),(07%), ad the composi-
tion can vary but only with respect to the relative contents

A:A:O E:A:O
Ya
AEO EEO

|
yE

Fig. 4. The so-caled composition sguare for a spine phase
(ATZET®)(ET,A?),(07?),. The straight line represents possible consti-
tutions for the only composition allowed by the electroneutrality require-
ment. Three of the corners represent hypothetical compounds that are
charged. In the compound energy formalism they only appear in neutral
combinations.
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of E,O, and F,0,. One may use (yz—Y;)/4+ (e —yp)/2
as a composition variable which could vary from 0.5 to
—0.5. By combination with the y, and y, variables from
Fig. 4 (after replacing y by 1—y}) we now obtain a
three-dimensional diagram with a neutral plane. If a fourth
metal is added, there will be a four-dimensional diagram
which could not be illustrated graphically [21].

In the mathematical model of crystalline ionic phases
there will appear the Gibbs energy of formation of the
charged compounds represented by al the non-neutral
end-members. It does not make sense to try to give them
realistic numerical values because they only appear in
neutral combinations when the condition of electroneutral-
ity is applied during calculations. Thus, one of them is
selected as a reference and the other ones are given
through neutral combinations with this one. In the last
example, one may select (E*°),(E"®),(0™%), with one
positive charge as a reference and quite arbitrarily define
A°Gg.c=0. (For simplicity we shall here omit O from the
subscript.) Then one can give numerical values to the
others, eg. (E*%),(A"%),(07?),, but it may be wise to
remember that the value of A;°G.., actualy holds for
A;°Gg., + A °Ge.e which represents the value of a neutral
combination since (E"%),(A"?),(0?), has a negative
charge that compensates for the positive charge of
(E")(E"),(07?)..

As an example, consider a simple spind
(A2 ET®)(E"®AT?),(07?),. Experimentaly one would
only be able to study a single point in the whole reciprocal
system, the point on the neutral line that represents the
stable constitution. One could hope to measure its Gibbs
energy and composition. Thus, it would normally be
possible to evaluate two parameters, only, whereas the
compound energy formalism description would contain
eight parameters if the regular solution parameters L, ., g,
Leagr Laga @d L, pe are al included. However, one
could simply put A°G, ge . and al the L parameters to
zero. Then, putting A;°Gg.¢ to zero as a choice of reference
for charges one could work with A;°G,. and A;°G.., as
the only optimization parameters and insert A;°G,.c+
A;°Gg., instead of A;°G,.,.

As one builds up a database for a phase, covering many
elements, there will be many subsystems and initially one
may select a reference for charges in each one. However,
in order to combine the descriptions of two subsystems it
is necessary to have the same reference for charges and it
will soon be necessary to accept a description of a
subsystem with a reference that is not part of the
subsystem itself. This is a well-known situation from
aqueous solutions where there is international agreement to
use a reference defined by the use of the hydrogenion. It is
evident that one should try to reach international agree-
ment on the reference to be used for each one of al the
ionic phases of general interest. However, it will take a
long time until enough systems have been assessed to
justify such an effort.

In order to introduce a common reference for charges in
two subsets it is necessary to have information from a
combined system which can be used to relate the two
initial references to each other. If there are two such
combined systems, and they are used for this purpose on
different occasions, different relations may be obtained
which will cause an inconsistency in the combined dataset.
Thus, the relation should only be derived on one occasion,
and preferably under the use of all possible information in
one optimization procedure.

For each kind of phase one will ultimately be able to
introduce a single reference for charges but during the
development of various subsets one may be forced to use
different references. In order to avoid incorrect combina-
tions one should store each subset under a separate phase
name as long as it is described with its own reference for
charges. It is also essential to show clearly in the dataset
what reference for charges has been used.

If the oxide contains vacancies, there may be experimen-
tal information on the composition as a function of the
oxygen potential. For example, consider the cerium diox-
ide which can show a strong deviation from stoichiometry.
One could write its formula as (Ce™*,Ce™®), (0O~ %Va’),.
The reaction with oxygen can be written as

4Ce™+207%=4Ce"+ 0, (40)

However, in order to use the compound energy formal-
ism we like to introduce the end-members and it has been
shown [22] that this can be done by replacing Ce™* with
(Ce*™),(07?), and Ce*® with (Ce*®),(O?), and, finally,
207% with (Ce™*),(0™?),—(Ce™™),(Va’), obtaining

5(Ce"),(0 %), = (Ce"),(Va’), + 4(Ce"?),(0 %), + O,
(41)

We would thus obtain
2,LLO = 5GC9+402 - GCe*“Vaz - 4GCe+302 (42)

and can obtain u, by calculating the three partial Gibbs
energies from Eq. (11). The result can then be compared
with the experimental information in the optimization
procedure. It is important to notice that with modern
software one can calculate u, directly without deriving an
expression like Eq. (42).

11. Point defects in semiconductors

Binary semiconductors with the zinc blende structure
have two sublattices. They are crystallographically equiva-
lent but are mainly occupied by one component each.
Anti-site atoms are the most common point defects but
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there are also ionized atoms in addition to free electrons
and holes. When modelling this type of phase one must
decide where to put the electrons and holes. When model-
ling the Ga—As system Chen and Hillert [20] argued that
they should not be put in any of the two sublattices for
atoms and instead they were put each one in its own
sublattice. That had the advantage that the number of sites
on those subléttices could be chosen as N. and N,, the
effective number of sites for electrons and holes, respec-
tively, at their energy levels. They can be estimated from
the effective masses of electrons at the conduction band
edge and of holes at the valence band edge, respectively
[23]. However, this method would make the modelling
very complicated if N, and N, vary with composition,
which would certainly happen in higher order systems.
Thus it was finally recommended to make the number of
sites equa in al the sublattices and compensate for the
incorrect number of sites for the electrons and holes by
subtracting the terms RT In(N.) and RT In(N,,) from their
Gibbs energy of formation, which would yield practically
the same result as long as the number of electrons and
holes are much less than N and N,,, respectively. It is then
possible to use the compound energy formalism and allow
Nc and N, to vary with composition if more elements are
added. It should further be mentioned that the sum of the
Gibbs energy of formation for electrons and holes was
taken from the width of the band gap. The model was thus
defined as

(ABB"),(BAA),(Vae),(Vah'),

where part of the anti-site atoms were assumed singly
ionized, and thus become native donors or acceptors. The
model based on this formula was treated directly with the
Thermo-Calc program.

In a subsequent study of the Cd-Te system [23],
vacancies and interstitials of Cd were aso considered and
a model defined by the formula

(Cdvava ?,Te),(TeVava'?,Cd),(Va,Cd,Cd %), (Vae),-
(Va,h™),

was used. According to this model, interstitial Cd (in third
sublattice where vacancies make the major constituent)
acts as a native donor in Cd rich material and vacancies on
the Cd sublattice act as native donors in Te rich material.
Neutral anti-sites are assumed on both main sublattices in
order to account for the relatively large homogeneity range
of the CdTe phase. The choice of divalency for defects in
this system is recommended in view of previous examina-
tions of the variation of electrical properties with com-
position and was also supported by the results of the new
assessment. It is interesting to note that even this case with
five sublattices could be treated directly with the Thermo-
Calc program. The strategy to define the optimization
parameters, outlined in Section 9, was used in that study.

12. lonic melts

When developing a regular solution model for ionic
melts, Hillert and Staffansson [6] accepted a proposal by
Temkin [24] that the structure could be approximated by
two sublattices, one each for cations and anions. This
proposal had been further developed by Flood, Forland and
Grjotheim [25]. Hillert and Staffansson discussed how to
define a non-planar surface of reference and they proposed
an expression similar to Eqg. (2) but with site fractions
based on equivalents instead of atoms and denoted z,. For
crystalline phases they replaced z; with the ordinary site
fraction y,. For crystalline phases the model was extended
to many components and sublattices by Harvig [7] and
Sundman and Agren [8].

When later trying to apply the model to melts with
variable tendency for ionization, Hillert, Jansson, Sundman
and Agren [26] found it more convenient to use the
ordinary site fractions in that case as well. They could then
introduce neutral species on the anion sublattice which
allowed the model to cover compositions all the way to the
non-metallic side. They discussed the corresponding meth-
od for extending the description all the way to the metallic
side but finally decided instead to recommend the intro-
duction of hypothetical vacancies in the anion sublattice
with a valency equal to the average valency on the cation
sublattice, but with a negative sign. The Cu—S melt was
thus modelled with the formula (Cu™*),(S ?Va *,S"),.
(It should be noted that the Thermo-Calc software requires
that neutral constituents are placed last in the ionic liquid
model.) In order to satisfy electroneutrality it was neces
sary to let the stoichiometric coefficients vary with com-
position in the following controlled way,

Q = 2chc = = VVa (43)

P= - Zyaya ~ RaYva=™ — zVaya + Yva 2VCyC
= - 2 yaya + QyVa (44)

where the cations are denoted by the subscript ¢ and the
anions by a. When applying Eq. (2) the terms with neutral
species, denoted by n, may be written as

22V Gen = 21 Ye 2Ya'Gy = Q 2V,°G, (45)

because an end-member with a neutral constituent would
be con, , i.e. y, aoms of n. The quantity °G, is here
defined for one mole of atoms of n. An end-member with
vacancies would have the following formula unit according
to Eq. (43),

(C)p(Vae)g = ()g(Va ) = ("), (Va ™),
= 1,(c"),(Va o), (46)

This would be identical to », neutral atoms of c.
However, we shall soon see that we must define the
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end-member of the cation ¢ with vacancies as Q neutra
atoms of c instead of »,. The full expression obtained from
Eq. (6) will thus be

MGm = EE ycyaAfch:a + QyVa Eyc Afch
+Q 2 ¥, ACG, + RT[P 2y, In(y.,)
+Q Xy, In(y)] + °G,, (47)

where °G, is a quantity defined for one mole of atoms of c.
It should be noted that this modification does not affect the
total content of cations because Qy, -2y, is egual to
2v.Y.Yva' 1. The subscript j represents all species on the
anion sublattice, i.e. anions, neutral species and vacancies.
A°G, and A;°G, are the differences between the liquid
states of one mole of pure c or n at the actua temperature
and in the reference states. It should be remembered that
A°G, formally contains also one mole of vacancies.

The amount of each cation, ¢, per mole of formula units
will be y, 2y, (—»,)+Qy,,Y.+0 according to Eq. (47),
which is equal to Py, according to Eq. (44). This is the
correct value and that is why the end-member of cation ¢
with vacancies was defined as Q neutral atoms of ¢. The
amount of each anion is y, 2y.»,=Qy, which is also a
correct value. The amount of each neutral constituent is
Qy,,, again a correct value.

Sundman [27] has discussed the excess terms. They
should reduce to the ordinary ones on a binary metallic
side, Y,Yglag- This will be the case if L, g.,,=QL, ;-
With y,,,=1 and y,=Yy,,=0 Eq. (47) would reduce to

MGm = QYva(Ya A°Gy + Y5 A;°Gg) + PRT[y, In(Ya)

+ Y IN(Yg)] + YaYeYvala g:va

=Q[X, A;°G, + Xg A°Gg + RT[X, IN(Xy)

+ Xg IN(Xg)] + X\ XgLa gl (48)
because here P=Q according to Eq. (44). This expression
for MG, thus refers to Q moles of atoms.

The excess terms should also reduce to the ordinary
ones on a binary non-metallic side, y, el ¢, where D and
E are two neutral species. This will be the case if L., =
mlpe ad Lg.p e =1lp . With only neutral species on
the anion sublattice, y,=Yy,,,=0 and P=0 according to Eq.
(34) and Eq. (47) would reduce to
MGm = Q(YD AfOGD +VYe AfOGE)

+ QRT[yp In(yp) + Ve In(ye)]

+ (Yata + Ys%)Yo yELD,E

=Q[Xp A;°Gp + X A°Gg + RT[Xp In(Xp)
+ X IN(g)] + XpXelp el (49)

Again, we obtain an expression for Q moles of atoms. It
should be added that, in addition to L. /1, =Lg.p e/t =

Loe, Oone must put the reciprocal parameter to zero,
Lagoe=0.

This model is very flexible but it should be noticed that
it does not primarily consider the interaction between two
neutral species or two cations through the compound
energies because they are treated as not being neighbours
since they are assumed to reside in the same sublattice.
However, this can hardly be realistic when the contents of
ions decrease to low values and the cation sublattice is
disappearing. In order to describe such effects it is
necessary to use interaction terms through the excess
Gibbs energy in Egs. (48) and (49).

For a molten mixture of salts there will be no neutra
congtituents or vacancies and one may take
(Na™,Ca"®),(Cl*,S0,%), as an example. On the other
hand, there are molten salts that can dissolve an excess of
metal. As an example, the Ca—CaF, liquid can be mod-
elled with the formula (Ca*?),(F~*Va %), and even with
(Ca*®)(F *Va % F, if one aso likes to describe an
excess of F [28].

The molten solution between an orthosilicate and
its component metal is modelled as
(Ca*?),(0 %S0, *Vva ?),. At higher SIO, contents there
will appear more complex silica species and pure molten
SiO, may be regarded as a single, huge molecule, held
together by covalent bonds. As an approximation, simple
enough to be handled, all such complex situations are
handled by the introduction of a hypothetical, neutral
species, SIO; [29]. For the above case, the complete model
will thus be (Ca*?),(0 %S0, *Va ?,Si03), and it covers
the whole composition range in the triangle Ca—CaO—
SiO,. In Al,O, the bonding has a considerable covalent
character and the Al,0,-SiO, liquid has been modelled
simply as (Al,0f ;, SIO3) [30]. Following that suggestion,
the CaO-Al,O, liquid was modelled as (Ca*?
AlI"®),(072,A1,0f 5), and Fe,0, was represented by the
species FeO, , e.g. in the Fe—O system where the formula
(Fe"?)o(0 %Va *Fe,0.), was used [31].

13. Short range order in crystals

In reality the atoms may not be distributed at random
within their sublattices but be influenced by interactions
with other atoms. One talks about short range order. To
describe such a situation one needs more independent
variables than there are independent mole or site fractions.
This problem was first treated by Bethe [10] who consid-
ered the probabilities for bonds between nearest neighbour
atoms. In a disordered alloy one could work with three pair
probabilities, p,,, Pag ad pgg, two of which are in-
dependent which is one more than the only independent
mole fraction. In an aloy with long range order over two
sublattices in a structure, where al nearest neighbour
bonds fall between the sublattices, one would have to
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distinguish between p,.; and pg.,. This addition of another
pair probability makes it possible to describe both long and
short range order. The energy is obtained by summation
over the bond energies and the configurational entropy is
obtained by considering the mixing of the bonds, using a
statistical treatment today often called the quasi-chemical
approximation. Kikuchi [32] developed this model further
by considering larger groups of atoms and several sizes at
the same time in the so-called cluster variation method
(CVM).

The compound energy formalism is basically a random
mixing model but can be extended to include short range
order by using the quasi-chemical approximation or some
of the features of CVM. The logical way to introduce short
range order into a compound energy model would be to
consider the entities defined by the compounds (end-mem-
bers) aready used in the random mixing model. One
would thus modify Eq. (2) by introducing the probabilities
for atomic arrangements corresponding to the end-mem-
bers, pend'

G?- = 2 pendOGend (50)

The basic part of the entropy of mixing now comes from
the mixing of these groups of atoms

Sm = = ZR 2 Panet IN( Pencr) (51)

where z is the number of such groups per mole of formula
units. However, this expression overestimates the entropy.
There are restrictions on the mutual arrangements of the
groups and one should at least require that the ordinary
expression for random mixing of atoms is recovered when
the probabilities take the values for random mixing, i.e.
when p,,,=1I1y5. Following the quasi-chemical approach,
as derived by Guggenheim [33] for a case with two
sublattices and all the nearest neighbour bonds falling
between the sublattices, Sundman [34] wrote

Smix = = ZRE pend In( pend/Hyj) - REznsyj In(yj)
(52)

The terms in the first summation will drop out for
random mixing, leaving the second summation which is
the well-known expression for random mixing within each
sublattice. For two sublattices one would have the four
variables p,.n, Pagy Pga @nd pg.g, and their values at
random mixing would be Y, Y, YaVe, YsYa ad ygVYe,
respectively. This compound energy model would be
identical to the corresponding quasi-chemical treatment. It
remains to be discussed whether the p,,, variables should
also be introduced into the excess terms of Eq. (5). When
considering a two-sublattice model for ionic melts, De-
ssureault and Pelton [35] considered the case of two
sublattices with two ions on each and all ions of the same
valency, (A,B),(X)Y),. They wrote the factor y,ygy, in

an excess term as (Y, Yy )(YsYx) /Yy and modified it to an
expression equivalent to p,.x Pg.x/Yx. An dternative
would be to write this factor as (Y, Yg Yy +YsYaYx)/2 and
modify it to (Y, Pg.x + Vs Pa-x)/ 2 Which may be simpler to
handle in calculations.

In an actual calculation one must determine the dis-
tribution over the various sublattices (i.e. long range order)
and the non-random distribution within the sublattices (i.e.
short range order) by minimizing G, with respect to al the
Peng Variables under constant composition. Thus, &l the
Peng Variables will be fixed and together they will represent
long and short range order. In such a calculation it is
necessary to express the site fractions appearing in Eq.
(52) in terms of the probabilities, which is easily done. For
two sublattices one gets relations like

y; =Pa:a t Pas (53)

Alternatively, one could work directly with site fractions
but then one must also introduce variables representing
short range order. For the simple case discussed here,
Sundman [34] replaced the first set of variables with the
second one using

Paa=YaYa— ¢ (54)
Paa =YaYs + & (55)
Pa:a = y;y; t+e (56)
Pa:n = Y:ayg - & (57)

The short range order variable ¢ is here defined as
€= PasPs:a ~ Pa:aPr:s (58)

For a more complex system such relations will be more
complicated, in particular when there are more than one
degree of freedom for short range order. It thus seems that
a general program for such calculations should be based
directly on the p,,4 variables. Such a program is not yet
available.

In order to make al nearest neighbour bonds fall
between sublattices it would be necessary to define four
sublattices for the f.c.c. structure Al. For a binar aloy
there would then be 16 p, variables, pa.a.a.ar Pa:acacss
Pa.a:g:a 8N Pa.g.a.a, EC. If the corresponding groups of
four atoms are regarded as tetrahedra, then one could
improve the entropy expression, Eq. (52), by using a result
from CVM which also includes a contribution from the
mixing of pairs. This was done by Sundman and Mohri
[16] and they expressed the compound energies by relating
them to the bond energies for pairs. Their calculations
were rather complicated because of the large number of
variables. It could be simplified if one would only be
interested in a certain type of long range order, e.g. the L1,
structure. However, in order to treat aloys with more
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elements it is desirable to simplify the treatment further
and such an attempt was made by Sundman [34].
Following a proposa by Blander and Yosim [36] for
ionic melts, Sundman et al. [17] recently suggested that
one could add the reciprocal term, Y, Vs VaYsla g:ass 8
an approximate description of the effect of short range
order in crystalline phases with two sublattices. Thus, one
would avoid the necessity of evaluating the effect of short
range order from the minimization of the Gibbs energy.
For the Au—Cu system they considered four sublattices and
introduced reciprocal terms  of the  form

u.u. v

ytA yéYAYBYA y\/,AVLA,B:A,B:A:A'

14. Short range order in ionic melts

Dessureault and Pelton [35] have treated short range
order in ionic melts when the cations have equa valencies
and aso the anions. In that case the stoichiometric
coefficients, defined by Egs. (43) and (44), have constant
values and the treatment for crystals can be applied
directly to a melt. Selleby and Sundman (M. Selleby and
B. Sundman, personal communication) have recently
shown how a short range order treatment can be developed
from the compound energy formalism for cases with a
mixture of valancies, even including neutral species, and
with vacancies. Before discussing their method a related
treatment based directly on Eq. (47) for random melts will
be presented. The same type of probabilities p,,4 as before
will be introduced in Eq. (47).

MGm = EZ pc:a AfOGC:a + Q E pc:Va Afch
+ Q 2 pn Afo(':’h
+ ZRT[2 2 Pea IN(Pecal VoY)

+ E pc:Va In( pc:Va/ycyVa) + 2 pn In( pn /yn)]
+RT[P 2y, In(y,) + Q 2y, In(y))] + °G,, (59)

It should be remembered that the subscript j represents
all species in the anion sublattice whereas the subscript a
only represents the true anions. The number of bonds per
formula unit, z, is not well defined in this case. A formula
unit contains P + Q atoms and, if they have an average
coordination number of 8, it may be reasonable to use
z=4(P + Q). Remembering that the subscript c:a stands
for the end-member c_, a, and c:Va stands for c,Va, we
obtain the site fraction for a cation, A,

Y, = 2(_ Va)pA:a+ QpA:Va
8 ZZ(_ Va)pc;a + Q 2 Pc.va

This is a more complicated expresion than Eq. (53)
because the stoichiometric coefficients vary. In addition, Q
contains y, because it is defined as Xv_y,. It will thus be

(60)

complicated to give an explicit expression for y, in terms
of the p,,4 variables, which is necessary if they are chosen
as the independent variables when minimizing the Gibbs
energy. As an aternative one could choose the site
fractions and the short range order parameter, &, as the
independent variables in the minimization procedure. Then
one must express al the p,,,4 quantities in terms of that set
of variables which must be done by solving a system of
equations like Eg. (60). As a simple example, it may be
mentioned that the case (A%, B"),(D "%, E™9), vields

Pa:o = YaYo T €lYaYo(a@ — b)(d — €) — be] (61)
Pa:e = YaYe T £lYaYe(@—b)(d —€) + bd] (62)
Pe:o =YeYo T é[YeYo(@ —b)(d —€) + a€] (63)
Pe.e = YeYe T &lYsYe(@ —b)(d —€) —ad] (64)

to be compared with Egs. (54)—(57). However, for a more
genera case this may become very complicated. It is thus
highly desirable to find a method of introducing prob-
abilities in such a way that Q does not appear in the
primary expression for the cations. The site fractions could
then be expressed directly in terms of the p,,, variables
using expressions corresponding to Eg. (60). The p,4
guantities could then be used as the set of independent
variables. The problem of Q in Eq. (60) arises from its
introduction instead of », in Eq. (46) when Eq. (47) was
derived. An obvious possibility would thus be now to
revert that modification when the p,, Quantities are
introduced. We would thus write the second summation in
Eq. (59) as 2 v, Pg.va A¢°G,, Obtaining

E(_ Va)pA:a + VA pA:Va

= ZE(_ va)pc:a + 2 Ve Pe.va

For species on the anion sublattice we would find

2Vc pc:D

(65)

= 66

y EEchc:a+2ch0:Va+szn ( )
zVc pc‘Va

Va = ) 67

y EEchc:a+2chc:Va+Q2pn ( )

y =
§ ZEchc:a—'_ZVCpC:Va—i_szn

but here the presence of Q does not cause much complica-
tions because Q only contains site fractions for the cations.
It is also necessary to express the stoichiometric co-
efficients, P and Q, in terms of the p,,, variables because
they appear in the ideal entropy part of Eq. (59).

From their definitions, Egs. (43) and (44), we find
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_ EE Vc(_ Va)pc:a + (Vc)zpc:Va

_ 2 Y, = 69
Q g y EE(_Va)pc:a+ Echc:Va ( )
P=2(=2)a* QYva

_ EEVC(_ Va)pc:a+ Q EVC pC:Va (70)

- ZEchc:a+ 2chc:va—’_ Q an

Selleby and Sundman (M. Selleby and B. Sundman,
personal communication) found another alternative by
comparing with an associate solution model where al the
associates have one atom of the anion species. In order to
make the expression hold for the same number of atoms as
before, they multiplied by Q, obtaining instead of Eq. (59),

MGm = (D[Z2 pc:a AfOGC,Va
+ 2 pn AfoG'n
+ ZRT[2 2P0 IN(QPgal YoYa)

+ 2 PevalYeVua)ll + RTIP 2y, In(y,)
+Q Xy, In(y)l + G, (71)

Vcal + 2 Pe:va Afch

/

In order to make the comparison with Eq. (59) easier,
we can rewrite the surface of reference as

G = 2 2(Q/)Pea’Ce_, +Q 2 PG
+Q 2 p,°G, (72)

The only modification of Eqg. (59) is that p.., has been
replaced by (Q/z,)p..,- This causes the p_., quantities to be
quite different and that will indirectly affect the values of
P.va and p,. The following expressions will now be
obtained for the site fractions

C (U)2(2)Paat Pava

S S Pt 2 P "
Yo = 2 Peo (74)
Yva= 2 Peva (75)
Yn = Pu (76)
SRS v
P=2(~ )Yt QWva

= 22~ 1)Pea+ Q 2 Peva (78)

The value of z in Eq. (71) should aso be discussed. For
Eq. (59) the value 4(P + Q) was proposed. In Eq. (71) zis
already multiplied by Q and one could thus propose the
value 4/(1+ P/Q). When including this model in the

Thermo-Calc software package, Sundman entered z as a
parameter that can be chosen freely. The model based on
Eq. (59) after reverting the change from z, to Q has not
yet been programmed.

It should again be mentioned that Dessureault and
Pelton [35] took into account the effect of binary inter-
action parameters on the short range order in a reciprocal
system. As described in Section 13 this can aso be done
with the compound energy formalism by substituting the
appropriate p,,4 variable for products of y, in the excess
terms. There are a number of ways to do this, however.
Finally, it should again be mentioned that Blander and
Yosim [36] proposed that one could use the reciprocal
parameter to approximate the effect of short range order in
ionic melts.

15. Summary

The compound energy model has been developed step
by step, taking into account various complicating aspects,
and is now capable of describing the properties of many
different types of phases. It is thus widely used in
CALPHAD assessments although there are methods taking
better account of short range order. However, they require
more computing time and grow more complicated as the
number of sublattices and components increases. It is
hoped that the inclusion of a simple treatment of short
range order in the compound energy formalism may be
sufficient for most practical applications.
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