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Abstract

The compound energy formalism for solution phases with sublattices is very flexible and thermodynamic models for a large variety of
phases have been constructed within this formalism. The range of applications is reviewed and the methods of handling various problems
are examined. Recent developments including treatments of short range order within the compound energy formalism are reviewed.
 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction terms and it reduces to that model when all the sites in all
but one of the sublattices are vacant.

Ever since the thermodynamic treatments of lattice The compound energy formalism has been applied to the
defects in stoichiometric phases by Wagner and Schottky modelling of a large variety of phases and methods have

¨in 1930 [1] and Olander in 1932 [2] and of interstitial been developed to treat different situations. These methods
solutions by Johansson in 1937 [3], it has been realized will now be reviewed and examined.
that an adequate description of the properties of solution
phases with sublattices must take the existence of the
sublattices into account. Initially, most of the interest was 2. Definition of the compound energy formalism
focused on low contents of defects or interstitials but the
need to cover the whole range of composition has grown The compound energy formalism [6–9] was constructed
as an effect of the CALPHAD approach which started by in order to describe models of the thermodynamic prop-
the introduction of the concept ‘lattice stability’ [4] in erties of phases with two or more sublattices which show a
order to describe the whole composition range for substitu- variation in composition, i.e. belonging to the class of
tional solutions. The concept of ‘compound energy’ plays solution phases. The structure of a phase is represented
the same role for solution phases with sublattices as ‘lattice simply by the formula, e.g. (A,B) (D,E,F) where A and Bk l

stability’ plays for substitutional solutions. mix on the first sublattice and D, E and F mix on the
There have been many efforts to develop physical second one. The coefficients k and l are the stoichiometric

models of the interactions between atoms in sublattice coefficients and one mole of formula units thus contains
phases, e.g. the Bragg–Williams model [5]. The compound k1l moles of atoms. The general notation for the stoichio-

senergy formalism started [6] as a purely mathematical metric coefficients will be n where the superscript s
method, based on an analytical expression for the Gibbs defines the sublattice. The constitution of the phase is

senergy using terms of increasing powers of the mole described by the site fractions, y , etc. Thus, the summa-A
sfractions of atoms within the individual sublattices, so- tion over each sublattice yields Sy 51, etc. It should beJ

called ‘site fractions’. In addition, random mixing within noted that J can represent any type of species, i.e. atom,
each sublattice was assumed when constructing the terms molecule, ion or vacancy. A certain species in a certain
for the constitutional entropy. It is thus the natural sublattice is regarded as a ‘constituent’. A component I of
extension of the regular solution model with higher power a phase can occur as a constituent in more than one

sublattice, i.e. as more than one constituent of the phase. It
may even occur in more than one constituent in the same
sublattice. As an example, the component Fe may occur as*Tel.: 146-8-790-8385; fax: 146-8-207-681.
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stst s sall the constituents are single atoms, simple ions or in the following condensed form S8G Sy m where JI J

vacancies, the number of atoms per formula unit will be represents all constituents containing component I.
s s

Sn (12y ). When there are no complex constituents, J is identical toVa
s sIn the limits there will be only one species on each I and m is identical to n , and for each component I one

stst s ssublattice, and stoichiometric compounds are thus defined obtains a term 8G Sy n where the summation covers allI I

as ‘end-members of the solution phase’ or simply ‘end- the sublattices containing the component I as a constituent.
member compounds’, e.g. A D . For simplicity, the symbol The content of a component I per mole of formula unitsk l

for the Gibbs energy of an end-member will be given by would then be related to the mole fraction of I, x , throughI

giving the element on each sublattice but excluding the the number of atoms per formula unit,
stoichiometric coefficients, e.g. 8G . The basis of theA:D s s s sO(n y ) 5 x On (1 2 y ). (4)I I Vacompound energy formalism is the assumption that, in
addition to a term for the ideal entropy of mixing,

What remains in excess of these contributions to the
mix s s s

2 S T 5 RT SS n y ln( y ) (1)m J J Gibbs energy is usually regarded as excess terms and they
are described with a generalized regular solution expres-constructed under the assumption of random mixing within
sion,each sublattice, there is a surface of reference (s.r.) defined
E s tby G 5 Py Oy Lm J B A,B:D:G . . .

s.r. sG 5 S8G Py (2) s t um end J 1 Py OOy y L 1 . . . (5)J B D A,B:D,E:G . . .

where the summation covers all the end-members and the
s The commas in the subscripts separate constituentsproduct Py contains one site fraction from each sublatticeJ

within a sublattice and the colons separate constituents inand they are identified by the constituents in the end-
different sublattices. As before, the products cover onemember. 8G is the Gibbs energy of one mole of formulaend

constituent on each sublattice. In the first group of terms,units of the compound representing the end-member. The
s s.r. the summation covers a second constituent in one sublat-quantity S(Py ) is unity and G thus represents aJ m

tice at a time and the L parameters are thus identified. Inweighted average over all the end-members. For a simple
the second group of terms, the double summation coverscase Eq. (2) may be justified by the Bragg and Williams
additional constituents in two sublattices. The latter param-model, which was based on Bethe’s proposal of pair-wise
eters are often called ‘reciprocal parameters’. The Lbond energies [10], but simplified by replacing Bethe’s
parameters could depend on composition and Redlich–quasi-chemical approach with random mixing within each
Kister terms in site fractions are recommended [11]. Aftersublattice [5]. It is more difficult to justify when different
rearrangement, the complete expression per mole of for-sites have different coordination numbers. The name
mula units would thus be‘compound energy model’ was introduced [9] when it was

proposed that Eq. (2) could be used in such cases as well. s s stst sG 2On (1 2 y ) Ox 8G 5OD 8G Pym Va I I f end JThe name ‘compound energy formalism’ was later intro-
duced as a more general concept, the idea being that a s s s E

1 RT OOn y ln( y ) 1 G . (6)J J mlarge variety of models with different physical back-
grounds may be expressed in this formalism. A great

The left hand side represents the mixing Gibbs energy,
advantage of a common formalism is that one can develop MG . When each component only occurs as a singlema general type of software allowing new models to be

species and it only resides in one sublattice, Eq. (4) could
developed and directly applied as long as they fit into the sbe inverted and each y could be calculated directly fromIsame formalism. When that is true, it is sufficent to define

the corresponding x . However, in the general case thereIa model by giving a formula showing the constituents in
are more independent site fractions than mole fractions and

each sublattice and the number of sites, e.g.
for a given composition one would have to minimize Gm(A,B) (D,E,F) .k l with respect to all the site fractions in order to find the

Numerical values of 8G can only be given relative toend equilibrium values of all the site fractions. The relations
standard states (stst) of the components I. Using such states

given by Eq. (4) would then have to be used as auxiliary
one can define the Gibbs energy of formation as

conditions. For phases containing ions it is also necessary
stst s to use the condition of electroneutrality as an auxiliaryD 8G 5 8G 2O8G Om (3)f end end I

condition. This kind of calculation is available in programs
where the first summation covers all the components I for thermodynamic calculations, e.g. Thermo-Calc [12]. It

spresent in the end-member and m is the number of I atoms is only necessary to define the formula for the phase and
present in sublattice s of the end-member. It should be then to give the model parameters, i.e. all the D 8G and Lf

noted that, when 8G from Eq. (3) is inserted in Eq. (2), quantities, unless they are already stored in a databaseend
sone gets SD 8G Py but also an expression we can give directly accessible for the program.f end J
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The bond energy model is constructed for phases where because each standard state is eliminated. We shall regard
atoms in different sublattices have the same coordination this as the ‘reaction parameter’.
number and it can then be brought into the compound At realistic temperatures the ideal entropic contribution
energy formalism. On the other hand, it is not evident how will modify the tendency of demixing and the miscibility
a bond energy model can be formulated when the coordi- gap will close at some critical temperature. By symmetry
nation number is different for different sites but the reasons, the critical point, i.e. the point of maximum on the
compound energy formalism, being a purely mathematical miscibility gap, will fall in the center in this simple case
model, can be applied directly to such cases as well. and its temperature can be found as follows. Start with the
However, as discussed in Section 7, one may then need to molar Gibbs energy expression,
consider the introduction of excess terms.

t u t u t uG 5 y y 8G 1 y y 8G 1 y y 8Gm A D A:D B D B:D A E A:E

t u s s
1 y y 8G 1 RT OOy ln( y ) (8)B E B:E J J

3. A simple reciprocal solution phase
For variations parallel to the A:D–B:E diagonal we have
t t u uIn order to illustrate the compound energy formalism it dy 5 2 dy 5 2 dy 5 dy and obtainA B E D

is convenient to use the simple case (A,B) (D,E) . Alll l
2 u 2possible compositions can be represented on a square with d G /d( y ) 5 28G 2 28G 2 28G 1 28Gm E A:D B:D A:E B:E

t uthe axes y and y . It may be called ‘composition square’.B E s
1 RT OO(1 /y ) 5 0 (9)cr JEven though there are four end-members, it is evident that

any composition can be obtained by mixing three end-
For symmetry reasons we can insert all y 51/2 at themembers. In particular, the center of the square may be J

critical (consolute) point, obtainingobtained by mixing equal amounts of either A:D and B:E
or A:E and B:D. This is why one calls (A,B) (D,E) al l

T 5 D8G /4R (10)cr A,B:D,Ereciprocal solution phase.
One can plot the surface of reference perpendicular to

the composition square, Fig. 1, and this would approximate If D8G is negative, one would obtain an identicalA,B:D,E

the whole Gibbs energy if there is no excess term and the result for a miscibility gap parallel to the A:E–B:D
temperature is low enough to make the ideal entropic diagonal. It is thus typical of reciprocal solution phases
contribution negligible. It is evident that an alloy of the that there is always a tendency of demixing in one
central composition would decrease its Gibbs energy by direction or the other.
separating into two parts, one consisting of A:D and the
other of B:E. The driving force for this demixing is
0.25D8G whereA,B:D,E 4. Chemical potentials

D8G 5 8G 1 8G 2 8G 2 8G (7a)A,B:D,E A:E B:D A:D B:E Except for the very simplest case, it would be very
difficult to carry out numerical calculations without aIt can also be given as
computer program. The program should be able to perform
calculations of all thermodynamic properties and in publi-D8G 5 D 8G 1 D 8G 2 D 8G 2 D 8GA,B:D,E f A:E f B:D f A:D f B:E
cations there would be no need to present equations except

(7b) for the Gibbs energy which is used for storing the basic
thermodynamic information. Nevertheless, it may be of
interest here to discuss the analytical calculation of chemi-
cal potentials. For a phase with sublattices they are
primarily defined for compounds, the end-members, and
not for components or constituents. See [13], for instance.
The chemical potential for a compound A D G would bek l m

obtained as

t u v
m 5 G 1 ≠G /≠y 1 ≠G /≠y 1 ≠G /≠yA:D:G m m A m D m G

s s
2OO( y ≠G /≠y ) (11)J m J

By definition, this quantity is related to the chemical
Fig. 1. The surface of reference for the Gibbs energy of a phase potentials of the constituents by
(A,B) (C,D) , according to the compound energy formalism, plotted1 1

above the composition square. m 5 km 1 lm 1 mm (12)A:D:G A D G
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5. Vacancies where the equilibrium constitution can only be found by
minimizing G .m

There are many cases where vacancies enter into one of
the sublattices. The corresponding end-members will then
be represented by compounds with an empty sublattice. In 6. Anti-sites and ordering
the simple case of two sublattices these compounds will be
A Va , etc. which is identical to k atoms of pure A in the One talks about anti-sites when an element, that normal-k l

related structure, i.e. with all the sites in the second ly resides in one sublattice, dissolves to a lower extent in
sublattice empty. It may be a stable, metastable or unstable another sublattice. That model can be directly included in
state of the element. In this case, the chemical potential of the compound energy formalism. Let us consider a binary
‘the compound’ A Va is identical to km because the phase with two sublattices where A prefers the first onek l A

chemical potential of vacancies is zero at so-called thermal and B the second one, a fact indicated by the positions and
equilibrium. It is also possible to obtain the chemical the use of bold letters in the example (A,B) (B,A) .1 2

potential of a constituent in the sublattice with vacancies (Except for this purpose, the recommendation to arrange
using Eq. (12) for a phase with two sublattices, the constituents of each sublattice in alphabetical order will

be followed in the present review. It has an effect on the
m 2 m 5 km 1 lm 2 km 2 lm 5 lm 2 lmA:D A:Va A D A Va D Va signs of Redlich–Kister parameters.) In general, the

amount of anti-site atoms will increase at increasing5 lm (13)D
temperature due to the effect of the configurational en-

If the practical interest in the phase lies in the region of tropy. The phase will be more and more disordered. We
low content of all the atoms in the sublattice with shall now examine if there is an order-disorder transition at
vacancies, then one talks about an interstitial solution, in some critical temperature where the phase disorders com-
particular if there are only two sublattices, one for substitu- pletely. The material balance for the phase (A,B) (B,A)1 2

tional alloy elements and one for interstitials. requires that an alloy of given composition falls on a line
Fig. 2 illustrates all possible constitutions for the simple with the slope 1/2 in Fig. 3. The full line holds for the

case of (A,B) (B,Va) . A constant composition is no longer 50/50 composition. The completely disordered states1 1

limited to a point but can exist on a straight line. Along would be represented by the intersection between the line
that line the constitution, i.e. the distribution over different for each alloy composition and the diagonal A A –B B1 2 1 2

u t tsublattices, varies. Thus, the square is no longer a true (dotted line) because there y 512y , i.e. y . It is thusA B A

composition square but for the sake of simplicity we shall necessary that the G curve in the section for constantm

retain that name. The full line holds for the 50/50 composition can have a minimum at that intersection,
composition and has a slope of 2. This is an example

Fig. 3. The so-called composition square for a phase (A,B) (B,A) ,1 2

Fig. 2. The so-called composition square for a phase (A,B) (B,Va) , representing all possible constitutions. Each one of the full and dashed1 1

representing all possible constitutions. All constitutions on the full line lines represents possible constitutions for a certain composition. In this
can form from the same composition, 50% A, 50% B. The dashed lines case the lines are parallel. The full line holds for 50% A, 50% B.
hold for two other compositions. Intersections with the dotted line represent completely disordered cases.
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otherwise the completely disordered state could never be sublattice which are exactly like those between the two
stable. For the general case, (A,B) (A,B) , the compound sublattices.P Q

energy formalism yields There is an important exception to the above conclu-
sions. For the case P 5 Q, two of the terms in Eq. (16)t u t u t uG 5 y y 8G 1 y y 8G 1 y y 8Gm A A A:A A B A:B B A B:A become zero and the equation can be satisfied by a single

t u condition, 8G 58G , which would occur if the sites in1 y y 8G A:B B:AB B B:B

both sublattices were identical. For such structures we cant t u u E
1 RTP Oy ln( y ) 1 RTQ Oy ln( y ) 1 G (14)J J J J m thus expect an order–disorder transition at a temperature

between those where G has a minimum or a maximummFor variations of the site fractions under constant com-
t t u u for the disordered state. That temperature is thus obtainedposition we have P dy 5 2 P dy 5 2 Q dy 5 Q dyA B A B

E by putting the second derivative of G to zero. For themand from Eq. (14) we get by neglecting G ,m
50/50 composition we obtain a result similar to Eq. (10),

t u t u tQ ? ≠G /≠y 5 (Qy 2 Py )8G 1 (Qy 1 Py )8Gm A A A A:A B A A:B
T 5 D8G /4R (21)tr A,B:B,Au t u t

2 (Qy 1 Py )8G 2 (Qy 2 Py )8GA B B:A B B B:B

t t where D8G 58G 18G 28G 28G . With thisA,B:B,A A:A B:B A:B B:A1 RTQP[1 1 ln( y ) 2 1 2 ln( y )]A B model, the compound energy formalism has thus given the
u u

1 RTQP[21 2 ln( y ) 1 1 1 ln( y )] (15) same result as the Bragg–Williams treatment of order–A B

disorder in the B2 structure with the interaction energy
t u t u A AFor a disordered state y 5y 5x and y 5y 5x and n 52D8G /2zN where N is the Avogadro num-A A A B B B AB A,B:B,A

the expression must be zero for a minimum in G , yielding ber and z is the coordination number, being 8 for the B2m

structure.tQ ? ≠G /≠y 5 (Q 2 P)x 8G 1 (Qx 1 Px )8Gm A A A:A B A A:B In order to indicate if an order–disorder transition is
2 (Qx 1 Px )8G 2 (Q 2 P)x 8G crystallographically possible between two sublattices, itA B B:A B B:B

has been proposed [14] that they should be marked with5 0 (16)
the same type of parenthesis in the formula, as in the
following example, [A,B][A,B](D,E). In that case there areIn order for this to occur over a range of compositions,
three sublattices at low temperatures but there could betwo conditions must be fulfilled,
complete disorder between the first two, if the temperature

(Q 2 P)8G 1 P 8G 2 Q 8G 5 0 (17)A:A A:B B:A is increased above a transition temperature. In view of the
above discussion, one would normally expect the number

Q 8G 2 P 8G 2 (Q 2 P)8G 5 0 (18)A:B B:A B:B of sites to be the same in the two sublattices taking part in
an order→disorder transition. In the following more

They can be transformed into the following two con- complicated example, [A,B][A,B]hD,EjhD,Ej, there are
ditions four sublattices at low temperatures but there could be

complete disorder between the first two and also between8G 5 (P 8G 1 Q 8G ) /(P 1 Q) (19)A:B A:A B:B
the last two. It would then be an interesting question
whether there will be two different transition temperatures8G 5 (Q 8G 1 P 8G ) /(P 1 Q) (20)B:A A:A B:B for the two order-disorder reactions or a common one. In
the compound energy formalism, the answer would beThese expressions imply that the energies of the com-
found by examining the Gibbs energies of the end-mem-pounds A B and B A should be exactly equal to theP Q P Q bers. For instance, if 8G and 8G have differentA:B:D:E A:B:E:Dweighted averages of pure A and B in the states of A AP Q values, then ordering on the first two sublattices would beand B B . This can hardly be expected. Consequently, oneP Q affected by ordering on the last two and they would have ashould not expect that such a phase can disorder complete-

E common transition temperature.ly except by the action of G in Eq. (14) which was laterm

neglected and did not show up in Eqs. (19) and (20). The
effect of the excess term will be described in Section 7 but

Ewe can already conclude that the coefficients in G must 7. The role of excess termsm

be closely related to the four compound energies in order
for this to occur. Otherwise it would be extremely unlikely The terms of the surface of reference in Eq. (2)
that their combined effect should give a minimum of G represent interactions between atoms on different sublat-m

exactly for the disordered state. A case of such a relation is tices because they contain site fractions from different
the L1 structure which may be described as A B . It may sublattices. The excess terms in the first summation of Eq.2 1 3

disorder completely to the A1 structure because the excess (5) contain two site fractions from the same sublattice and
term is due to nearest neighbour bonds within the second would thus be used to represent interactions between atoms
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in the same sublattice. For most models one would sublattices in the case of L1 . In order to use the2

primarily hope that excess terms are small and, as a first compound energy formalism in that way, one must derive
approximation, one would neglect them. This may be the relations between 8G , 8G and 8G inA:A:A:B A:A:B:B A:B:B:B

justified if all the nearest neighbours to an atom are in terms of the bond energies. As shown, e.g. by Sundman
other sublattices. The terms in the surface of reference and Mohri [16],
would then be the most important ones. However, already

D 8G 5 (3 /4) D 8G 5 D 8Gwhen the name ‘compound energy model’ was proposed f A:A:A:B f A:A:B:B f A:B:B:B

[9], it was emphasized that an excess term should be added A
5 12N n (25)ABin case some of the nearest neighbours to an atom are in

the same sublattice as the atom itself. This problem was
The two four-sublattice treatments, the Bragg–Williamsagain considered in a more recent discussion of the

treatment and the one based on the compound energyproperties of the compound energy model [15] and the
formalism, are then identical and they are more generalmodel parameters were there evaluated by counting the
than the two-sublattice model. They are very useful for thebonds and multiplying with bond energies. This may thus
Au–Cu system where three ordered phases based on thebe regarded as a way of expressing the Bragg–Williams
f.c.c. structure appear, Au Cu and AuCu with the L1model in the compound energy formalism. In the special 3 3 2

structure and Au Cu with the L1 structure. However,case of L1 (e.g. AlNi ), where all the atoms have the 1 1 02 3
they need further refinement in order to give realisticsame coordination number but two thirds of the nearest
results [17].neighbours to atoms in the second sublattice are in the

If all nearest neighbour bonds are taken care of in one ofsame sublattice, the compound energy formalism with two
Ethese ways, the remaining part of G would primarilysublattices yielded m

represent contributions from next-nearest neighbour bonds.
M t u t uG 5 y y D 8G 1 y y D 8G It should be realized that there are cases where they arem A B f A:B B A f B:A

also quite important. In the case of the B2 structure, theret t t t u u
1 RT y ln( y ) 1 y ln( y ) 1 3y ln( y )f A A B B A A are eight nearest neighbours in the other sublattice but six

u u t u u t u u
1 3y ln( y ) 1 y y y L 1 y y y L (22)g neighbours in the same sublattice and they are only 15%B B A A B A:A,B B A B B:A,B

further away. The energies of such bonds could then have
D 8G and D 8G disappeared because the standardf A:A f B:B an effect on the structure of the ordered phase.
states were chosen as pure A or B of the same structure. Ansara, Sundman and Willemin [18] recently discussed
By counting the bonds within the second sublattice and a formal way of predicting an order–disorder transition
assuming constant bond energies the following relations starting from a description of the ordered phase, using
were obtained. excess terms. They pointed out that a disordered state can

A be stable only if the Gibbs energy, as function of theD 8G 5 D 8G 5 N zn (23)f A:B f B:A AB
distribution over different sublattices under constant com-

t
u t position (e.g. as function of y for a binary two-sublatticeBL 5 L 5 (n /n 2 1) D 8G 5 2 D 8G (24)A:A,B B:A,B f A:B f A:B phase) is a point of extremum for the disordered arrange-

t ut u ment (i.e. at y 5y 5x ). As already mentioned inbecause n 51 and n 53 for AlNi . Thus, there would be B B B3
Section 6, this condition will directly give constraintsonly one independent model parameter, represented by
relating the model parameters to each other and theyD 8G or n , both of which are negative when there is af A:B AB
require excess terms if the number of sites on the sublat-tendency for ordering. This description of the Bragg–
tices are different. This will now be worked out in detail.Williams model using two sublattices is equivalent to the

By introducing the regular solution parameters, 8L ,ordinary treatment of the Bragg–Williams model for the A,B:A

8L , 8L and 8L , three constraints will beL1 phase using four equivalent sublattices without inter- A,B:B A:A,B B:A,B2
obtained using the method proposed by Ansara et al. Theyactions within any of them. It may be added that the
can be written as follows,relations given by Eqs. (23) and (24) would allow G tom

have a minimum in the disordered state, as discussed in u t
8L 5 (8L 1 D 8G )(n /n ) 2 D 8G (26)A:A,B A,B:A f B:A f A:BSection 6.

This has been an example of the advantage of combin-
u t u u t

8L 5 8L (n /n ) 1 D 8G n /(n 2 n )ing the compound energy formalism, which is purely B:A,B A,B:A f A:B

mathematical, with a physical model in order to derive u 2 t u t 2 t u t
1 D 8G [(n ) 2 3n n 1 (n ) ] /n (n 2 n )f B:Auseful relations between various model parameters.

Another way to handle the presence of nearest neigh- (27)
bour bonds within a sublattice would be to avoid such a
situation by splitting that sublattice, if nearest neighbour

8L 5 8LA,B:B A,B:Abonds within all sublattices can thus be avoided. Evidently,
u t u tthat is what the Bragg–Williams model does with four 1 (D 8G 2 D 8G )(n 2 2n ) /(n 2 n ) (28)f B:A f A:B
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Without the 8L parameters these equations can be to represent the total Gibbs energy of the ordered state.
t u ord.contr.simultaneously satisfied for n 5n , only. The same conclu- The quantity DG is expressed in terms of the site

t usion was reached in Section 6 where n and n were fractions. We shall now discuss this possibility for phases
denoted by P and Q. Such a case would be the B2→A2 that occur in an ordered as well as a disordered state.
transition. In order to predict an order–disorder transition As shown by Eq. (6) the properties of a phase with two

t ufor n ±n , it is necessary to introduce all four regular or more sublattices and without any complex constituents,
solution parameters but only one of them may be regarded i.e. with J identical to I, can be represented by an
as an independent parameter, e.g. 8L . If it is assumed expressionA,B:A

that the interactions within the second sublattice are
M s s s s sindependent of the occupancy of the first one, i.e. 8L 5 G ( y ) 5OD 8G Py 1 RT OOn y ln( y )B:A,B m I f end I I I

8L , then a combination of Eqs. (26) and (27) requiresA:A,B E s
1 G ( y ) (30)m Ithat D 8G 5D 8G , and then Eq. (28) requires thatf B:A f A:B

8L 58L . This yieldsA,B:A A,B:B

This expression may be used for the description of an
M t u t u u u u t t ordered phase. On the other hand, it may sometimesG 5 [y y 1 y y 1 y y (n 2 n ) /n ] D 8Gm A B B A A B f A:B

happen that an ordered phase can disorder at a sufficiently
t t u u u t

1 [y y 1 y y (n /n )] 8LA B A B A,B:A high temperature and the properties of the disordered state
may even have been described before one turns thes s

1 RT OOy ln( y ) (29)J J attention to the ordered state. One may then like to add a
description that accounts for the change of properties

Let us now compare with the bond energy model. If caused by the ordering. The ordered state may appear att un ,n , then it is natural to expect that there are no nearest low temperatures, at different compositions or on adding
neighbour bonds within the first sublattice and one may put an additional element. One would then like to retain the
8L and 8L equal to zero. In that case the excessA,B:A A,B:B old description for the disordered state. Ansara et al. [19]
term that has been introduced in order to predict an argued that one should then redefine the expression for theu u u torder–disorder transition is y y (n /n 21) D 8G . ThisA B f A:B mixing Gibbs energy per mole of formula units,
is in complete agreement with Eq. (24) which was

M M dis s ord.contr.obtained by expressing the Bragg–Williams model in the G 5 G (x ) ?On 1 DG (31)m m Icompound energy formalism [15]. However, the compound
M disenergy model based on Eqs. (26)–(28) is less restrictive where G (x ) is the mixing Gibbs energy per mole ofm I

ord.contr.since it gives two extra degrees of freedom. First, one does atoms in the disordered state and DG represents the
not need to put D 8G and D 8G equal and, secondly,f B:A f A:B contribution due to ordering of the disordered state,
one has another degree of freedom when selecting the counted per mole of formula units. It must vanish for the
values of the independent regular solution parameter. In disordered state which can be accomplished by writing it
addition, one can introduce higher Redlich–Kister terms as
but only by obeying special constraints between them.

ord.contr. M M dis sThose constraints were studied by Ansara et al. [19] for the DG 5 G 2 G (x ) ?Onm m I
L1 structure.2 corr s corr s

5 DG ( y ) 2 DG ( y 5 x ) (32)I I I

corr swhere DG ( y ) is a function to be determined byI

optimizing the description of the ordering behaviour, based8. Combination of mole fractions and site fractions
on the previous optimization of the disordered state. In Eq.

ord.contr. s(32) DG has been treated as a function of y and xIn Eq. (6) we used a combination of mole fractions and I I

and the last term makes it vanish for the disordered state.site fractions but that fact was later hidden by the
M It is possible to eliminate the x variables using Eq. (4).introduction of the mixing Gibbs energy, G . In fact, it is Im

For the case of no vacancies we haveused as soon as the Gibbs energy of formation of the
compound, D 8G , is used instead of the absolute value,f end s s sx 5On y /On (33)8G , which cannot be given a numerical value without I Iend

the use of references. For ordered phases, which require
the use of site fractions, Ansara et al. [19] proposed that it One would thus obtain
may sometimes be convenient to use the disordered state

ord.contr. s corr s corr s s s s
DG ( y ) 5 DG ( y ) 2 DG ( y 5On y /On )for the same composition as a kind of reference, expressed I I I I

in terms of the mole fractions. The remaining part of the (34)
Gibbs energy could then be regarded as the contribution

ord.contr. Mdue to ordering and denoted by DG , not to be and G from Eq. (31) could be written as a function ofm
ordconfused with the notation G , which is sometimes used only site fractions.
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M s s M dis s s s corr sG ( y ) 5On ? G (x 5On y /On ) 1 DG ( y ) both small but for richer solutions it represents a deviationm I m I I I

from ideal solution behaviour. The coefficient (8G 1corr s s s s A:E
2 DG ( y 5On y /On ) (35)I I 8G 28G 28G ) was already defined by Eq. (7),B:D A:D B:E

using the notation D8G and it represents the standardA,B:D,E
It may look as if this function is not identical to Gibbs energy of the reciprocal reaction A:E1B:D→A:D1M sG ( y ) given by Eq. (30) because they are based onm I B:E and was called ‘reaction parameter’. It would be more

different optimizations and, although one would hope that meaningful to give that parameter than the fourth com-Mthey both describe the real properties of G well, theym pound energy, D 8G . An important characteristic of thef B:E
would not be identical because they are based on different reaction parameter is that its numerical value is indepen-
sets of model parameters. However, as explained in dent of the choice of standard states. It thus describes
Section 7, in order to make it possible for an ordered phase properties of the phase itself. For example, it was already
to disorder it is necessary to introduce relations between mentioned in Section 3 that this parameter directly controls
the model parameters, i.e. the parameters in Eq. (35). The the tendency of demixing and in Section 6 that it controls
sets of independent parameters may thus become identical the tendency of ordering if there are no excess terms. As a
for Eqs. (30) and (35). consequence, it is convenient to work with the reaction

It was recently pointed out by Sundman (B. Sundman, parameter when optimizing the description of a phase. One
unpublished work) that it may also be advantageous to can often make a reasonable first guess of its value, one
introduce a term depending on the composition and can foresee the effect of a change in its value during an
expressed in terms of the x variables even if the phaseI optimization and one can predict when it will have a
cannot disorder. He has proposed that this method should negligible influence on the properties and would not need
be called ‘partitioning of the Gibbs energy’. to be optimized. It is thus strongly recommended that

reaction parameters should be used as ‘optimization pa-
rameters’ in addition to those compound energies that are

9. Model parameters and optimization parameters needed to describe dilute solutions.
When there are more than two sublattices and more than

Basically, the primary model parameters are the com- two constituents on each one, there may be a large number
pound energies and their numerical values must be given of reciprocal subsystems but all their reaction parameters
relative to a set of standard states for the components, i.e. cannot be included in the set of optimization parameters
as Gibbs energy of formation. See Eq. (3). If the pure because all of them are not independent. It is necessary to
elements appear as end-members of the solution phase select some of them as the independent ones and include
under consideration, then one can use those states as only those in the set of optimization parameters [20]. As an
standard states but other choices may be more convenient example, with two sublattices with m and n constituents,
or even necessary, in particular in calculations of equilibria respectively, there will be m?n end-member compounds
between different phases where the same standard states and m?n optimization parameters are needed. One of the
must be used for all phases. In principle, it is permitted to compounds may be regarded as the main one and dilute
choose any set of standard states. solutions in that compound may be described by adding

When there are two or more sublattices, it may be the energies of all the compounds obtained by substituting
convenient to introduce new model parameters instead of one at a time of the remaining constituents. We have thus
some of the compound energies. This can be illustrated selected 1 1 (m 2 1) 1 (n 2 1) optimizing parameters and
with the simple reciprocal solution phase (A,B) (D,E) .1 1 need m ? n 2 [1 1 (m 2 1) 1 (n 2 1)] 5 (m 2 1) ? (n 2 1)
Suppose the practical interest in a phase falls in the more. They should come from the reaction parameters but
neighbourhood of the A:D end-member. It is then conveni- their total number is (m21)!?(n21)! which may be much
ent to describe the various compositions using two in- larger.

t udependent site fractions, i.e. y and y , and eliminate theB E The strategy for selecting the independent reaction
t t u uother two by inserting y 512y and y 512y . OneA B D E parameters could be as follows. For each sublattice,

then obtains arrange the constituents in their order of importance judged
M t by the maximum value of their site fractions. The com-G 5 D 8G 1 y (D 8G 2 D 8G )m f A:D B f B:D f A:D pounds used to define the model in the compound energy

u
1 y (D 8G 2 D 8G ) formalism are obtained by taking one constituent for eachE f A:E f A:D

t u sublattice. The main compound is defined by taking the2 y y (8G 1 8G 2 8G 2 8G )B E A:E B:D A:D B:E first one for each sublattice. The compounds to be used in
s s E

1 RT OOy ln( y ) 1 G (36) the dilute solution approximation are defined by insteadI I m

including one at a time of the remaining constituents. For
The first three terms are defined by the three compound all these compounds D 8G will be included in the set off end

energies D 8G , D 8G and D 8G . For dilute solu- optimization parameters. Then, define a compound byf A:E f A:D f B:D
t utions one can neglect the fourth term because y and y are selecting the second constituent in two of the sublattices,B E
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and express its compound energy using the reciprocal resembling that for (A,B) (B,Va) in Fig. 2. However,1 1

system with compounds already selected. This procedure CaCl would be the only neutral end-member. Instead of2

can be continued to include less and less important lines for constant composition one now obtains lines for
constituents until all compounds have been covered. For constant charge, one of which being the neutral line. It
example, suppose the constituents are already arranged would start from the CaCl corner and have a slope of 1 /2.2

according to their importance in the formula Only compositions on the neutral line would be of
(A,B,C) (D,E,F) (G,H,I) . First include D 8G in the practical interest but the model describes the whole squarek l m f A:D:G

set of optimization parameters in order to represent the which may thus be regarded as a true composition square.
major constituents, and then D 8G , D 8G , When making calculations one must add the condition off B:D:G f A:E:G

D 8G , D 8G , D 8G and D 8G to represent electroneutrality. This is done automatically by existingf A:D:H f C:D:G f A:F:G f A:D:I

the minor constituents. Then, define software.
The same phenomenon occurs without the action of

D 8G 5 D 8G 1 D 8G 2 D 8Gf B:E:G f A:E:G f B:D:G f A:D:G vacancies if there are two sublattices for the cations and
2 D8G (37) they have different valancies, an example being the spinelA,B:D,E:G

phase. It is a double oxide with a divalent and a trivalent
and include D8G in the set. Next, defineA,B:D,E:G metal. In a normal spinel they prefer different sublattices

and the ideal structure would normally beD 8G 5 D 8G 1 D 8G 2 D 8Gf B:D:H f A:D:H f B:D:G f A:D:G 12 13 22(A ) (E ) (O ) . However, the cations can go into1 2 4
12 13 13 12 222 D8G (38)A,B:D:G,H anti-site positions, yielding (A ,E ) (E ,A ) (O ) .1 2 4

The constitution can thus vary but only along a neutral lineand include D8G in the set, etc. The last compoundA,B:D:G,H in the square. See Fig. 4. It should be noticed that in thiswould be CFI and its energy could be defined using
case the neutral line represents a single composition AO?

D 8G 5 D 8G 1 D 8G 2 D 8G 2 D8G E O and the state of equilibrium is obtained by mini-f C:F:I f A:F:I f C:D:I f A:D:I A,C:D,F:I 2 3

mizing the Gibbs energy under the condition of electro-(39)
neutrality or constant composition corresponding to AO?

since D 8G , D 8G and D 8G have been defined E O .f A:F:L f C:D:I f A:D:I 2 3

earlier in the process and their definitions can be inserted. The right-hand end-point on the neutral line in
All the compound energies have thus been defined in terms Fig. 4 represents so-called ‘inverse spinel’,

13 13 12 22of the new set of optimizing parameters which does not (E ) (E ,A ) (O ) and in some systems it is more1 0.5 0.5 2 4

include all possible reaction parameters. stable than the ‘normal spinel’. If one adds a second
It may often happen that the available experimental trivalent metal, the formula would be

12 13 13 13 13 12 22information is not sufficient for a meaningful optimization (A ,E ,F ) (E ,F ,A ) (O ) and the composi-1 2 4

of all the optimization parameters. It may then be neces- tion can vary but only with respect to the relative contents
sary to use theoretical or empirical methods of estimating
the values of some of them and not let them vary during
the optimization. This method should primarily be applied
at the end of the list of parameters. Often the importance of
a reaction parameter at the end of the list could even be so
small that any value, e.g. zero, could be used. For a
complicated phase with a very large number of end-
member compounds it may be convenient to put many of
the independent reaction parameters to zero.

Of course, excess terms with regular or Redlich–Kister
parameters should be used only for reciprocal systems at
the beginning of the list of reciprocal systems and only
when there is sufficient experimental information to de-
termine them.

10. Ionic crystals

Fig. 4. The so-called composition square for a spinel phaseIf the constituents are ions, it is possible that the
12 13 13 12 22(A ,E ) (E ,A ) (O ) . The straight line represents possible consti-1 2 4compound energy model uses some end-members that are

tutions for the only composition allowed by the electroneutrality require-not neutral. An example would be the solution of NaCl in
ment. Three of the corners represent hypothetical compounds that are

CaCl . It may be described with the formula2 charged. In the compound energy formalism they only appear in neutral
12 11 21 0(Ca ,Na ) (Cl ,Va ) , yielding a diagram somewhat combinations.1 2
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t t u uof E O and F O . One may use ( y 2y ) /41( y 2y ) /2 In order to introduce a common reference for charges in2 3 2 3 E F E F

as a composition variable which could vary from 0.5 to two subsets it is necessary to have information from a
t u

20.5. By combination with the y and y variables from combined system which can be used to relate the twoA A
t tFig. 4 (after replacing y by 12y ) we now obtain a initial references to each other. If there are two suchE A

three-dimensional diagram with a neutral plane. If a fourth combined systems, and they are used for this purpose on
metal is added, there will be a four-dimensional diagram different occasions, different relations may be obtained
which could not be illustrated graphically [21]. which will cause an inconsistency in the combined dataset.

In the mathematical model of crystalline ionic phases Thus, the relation should only be derived on one occasion,
there will appear the Gibbs energy of formation of the and preferably under the use of all possible information in
charged compounds represented by all the non-neutral one optimization procedure.
end-members. It does not make sense to try to give them For each kind of phase one will ultimately be able to
realistic numerical values because they only appear in introduce a single reference for charges but during the
neutral combinations when the condition of electroneutral- development of various subsets one may be forced to use
ity is applied during calculations. Thus, one of them is different references. In order to avoid incorrect combina-
selected as a reference and the other ones are given tions one should store each subset under a separate phase
through neutral combinations with this one. In the last name as long as it is described with its own reference for

13 13 22example, one may select (E ) (E ) (O ) with one charges. It is also essential to show clearly in the dataset1 2 4

positive charge as a reference and quite arbitrarily define what reference for charges has been used.
D 8G 50. (For simplicity we shall here omit O from the If the oxide contains vacancies, there may be experimen-f E:E

subscript.) Then one can give numerical values to the tal information on the composition as a function of the
13 12 22others, e.g. (E ) (A ) (O ) , but it may be wise to oxygen potential. For example, consider the cerium diox-1 2 4

remember that the value of D 8G actually holds for ide which can show a strong deviation from stoichiometry.f E:A
14 13 22 0

D 8G 1D 8G which represents the value of a neutral One could write its formula as (Ce ,Ce ) (O ,Va ) .f E:A f E:E 1 2
13 12 22combination since (E ) (A ) (O ) has a negative The reaction with oxygen can be written as1 2 4

charge that compensates for the positive charge of
13 13 22 14 22 13(E ) (E ) (O ) . 4Ce 1 2O 5 4Ce 1 O (40)1 2 4 2

As an example, consider a simple spinel
12 13 13 12 22(A ,E ) (E ,A ) (O ) . Experimentally one would1 2 4 However, in order to use the compound energy formal-

only be able to study a single point in the whole reciprocal ism we like to introduce the end-members and it has been
system, the point on the neutral line that represents the 14shown [22] that this can be done by replacing Ce with
stable constitution. One could hope to measure its Gibbs 14 22 13 13 22(Ce ) (O ) and Ce with (Ce ) (O ) and, finally,1 2 1 2energy and composition. Thus, it would normally be 22 14 22 14 02O with (Ce ) (O ) –(Ce ) (Va ) obtaining1 2 1 2possible to evaluate two parameters, only, whereas the
compound energy formalism description would contain 14 22 14 0 13 225(Ce ) (O ) 5 (Ce ) (Va ) 1 4(Ce ) (O ) 1 O1 2 1 2 1 2 2eight parameters if the regular solution parameters L ,A:A,E

L , L and L are all included. However, one (41)E:A,E A,E:A A,E:E

could simply put D8G and all the L parameters toA,E:E,A

zero. Then, putting D 8G to zero as a choice of referencef E:E We would thus obtain
for charges one could work with D 8G and D 8G asf A:E f E:A

the only optimization parameters and insert D 8G 1 2m 5 5G 2 G 2 4G (42)14 14 13f A:E O Ce O Ce Va Ce O2 2 2
D 8G instead of D 8G .f E:A f A:A

As one builds up a database for a phase, covering many and can obtain m by calculating the three partial GibbsO
elements, there will be many subsystems and initially one energies from Eq. (11). The result can then be compared
may select a reference for charges in each one. However, with the experimental information in the optimization
in order to combine the descriptions of two subsystems it procedure. It is important to notice that with modern
is necessary to have the same reference for charges and it software one can calculate m directly without deriving anO
will soon be necessary to accept a description of a expression like Eq. (42).
subsystem with a reference that is not part of the
subsystem itself. This is a well-known situation from
aqueous solutions where there is international agreement to
use a reference defined by the use of the hydrogen ion. It is 11. Point defects in semiconductors
evident that one should try to reach international agree-
ment on the reference to be used for each one of all the Binary semiconductors with the zinc blende structure
ionic phases of general interest. However, it will take a have two sublattices. They are crystallographically equiva-
long time until enough systems have been assessed to lent but are mainly occupied by one component each.
justify such an effort. Anti-site atoms are the most common point defects but
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there are also ionized atoms in addition to free electrons 12. Ionic melts
and holes. When modelling this type of phase one must
decide where to put the electrons and holes. When model- When developing a regular solution model for ionic
ling the Ga–As system Chen and Hillert [20] argued that melts, Hillert and Staffansson [6] accepted a proposal by
they should not be put in any of the two sublattices for Temkin [24] that the structure could be approximated by
atoms and instead they were put each one in its own two sublattices, one each for cations and anions. This

¨sublattice. That had the advantage that the number of sites proposal had been further developed by Flood, Forland and
on those sublattices could be chosen as N and N , the Grjotheim [25]. Hillert and Staffansson discussed how toC V

effective number of sites for electrons and holes, respec- define a non-planar surface of reference and they proposed
tively, at their energy levels. They can be estimated from an expression similar to Eq. (2) but with site fractions
the effective masses of electrons at the conduction band based on equivalents instead of atoms and denoted z . ForJ

edge and of holes at the valence band edge, respectively crystalline phases they replaced z with the ordinary siteJ

[23]. However, this method would make the modelling fraction y . For crystalline phases the model was extendedJ

very complicated if N and N vary with composition, to many components and sublattices by Harvig [7] andC V
˚which would certainly happen in higher order systems. Sundman and Agren [8].

Thus it was finally recommended to make the number of When later trying to apply the model to melts with
sites equal in all the sublattices and compensate for the variable tendency for ionization, Hillert, Jansson, Sundman

˚incorrect number of sites for the electrons and holes by and Agren [26] found it more convenient to use the
subtracting the terms RT ln(N ) and RT ln(N ) from their ordinary site fractions in that case as well. They could thenC V

Gibbs energy of formation, which would yield practically introduce neutral species on the anion sublattice which
the same result as long as the number of electrons and allowed the model to cover compositions all the way to the
holes are much less than N and N , respectively. It is then non-metallic side. They discussed the corresponding meth-C V

possible to use the compound energy formalism and allow od for extending the description all the way to the metallic
N and N to vary with composition if more elements are side but finally decided instead to recommend the intro-C V

added. It should further be mentioned that the sum of the duction of hypothetical vacancies in the anion sublattice
Gibbs energy of formation for electrons and holes was with a valency equal to the average valency on the cation
taken from the width of the band gap. The model was thus sublattice, but with a negative sign. The Cu–S melt was

11 22 21 0defined as thus modelled with the formula (Cu ) (S ,Va ,S ) .P Q

(It should be noted that the Thermo-Calc software requires
1 2 2 1(A,B,B ) (B,A,A ) (Va,e ) (Va,h ) that neutral constituents are placed last in the ionic liquid1 1 1 1

model.) In order to satisfy electroneutrality it was neces-
where part of the anti-site atoms were assumed singly sary to let the stoichiometric coefficients vary with com-
ionized, and thus become native donors or acceptors. The position in the following controlled way,
model based on this formula was treated directly with the
Thermo-Calc program. Q 5On y 5 2 n (43)c c Va

In a subsequent study of the Cd–Te system [23],
vacancies and interstitials of Cd were also considered and P 5 2On y 2 n y 5 2On y 1 y On ya a Va Va a a Va c c
a model defined by the formula

5 2On y 1 Qy (44)a a Va
22 12 12 2(Cd,Va,Va ,Te) (Te,Va,Va ,Cd) (Va,Cd,Cd ) (Va,e ) -1 1 1 1 where the cations are denoted by the subscript c and the

1 anions by a. When applying Eq. (2) the terms with neutral(Va,h )1

species, denoted by n, may be written as
was used. According to this model, interstitial Cd (in third
sublattice where vacancies make the major constituent) OOy y 8G 5On y Oy 8G 5 Q Oy 8G (45)c n c:n c c n n n n

acts as a native donor in Cd rich material and vacancies on
because an end-member with a neutral constituent wouldthe Cd sublattice act as native donors in Te rich material.
be c n , i.e. n atoms of n. The quantity 8G is here0 n c nNeutral anti-sites are assumed on both main sublattices in c

defined for one mole of atoms of n. An end-member withorder to account for the relatively large homogeneity range
vacancies would have the following formula unit accordingof the CdTe phase. The choice of divalency for defects in
to Eq. (43),this system is recommended in view of previous examina-

n n n 2Q n 2ntions of the variation of electrical properties with com- c Va c c c(c ) (Va ) 5 (c ) (Va ) 5 (c ) (Va )P Q Q Q n nc cposition and was also supported by the results of the new
n 2nc c5 n (c ) (Va ) (46)assessment. It is interesting to note that even this case with c 1 1

five sublattices could be treated directly with the Thermo-
Calc program. The strategy to define the optimization This would be identical to n neutral atoms of c.c

parameters, outlined in Section 9, was used in that study. However, we shall soon see that we must define the
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end-member of the cation c with vacancies as Q neutral L , one must put the reciprocal parameter to zero,D,E

atoms of c instead of n . The full expression obtained from L 50.c A,B:D,E

Eq. (6) will thus be This model is very flexible but it should be noticed that
it does not primarily consider the interaction between two

MG 5OOy y D 8G 1 Qy Oy D 8G neutral species or two cations through the compoundm c a f c:a Va c f c

energies because they are treated as not being neighbours
1 Q Oy D 8G 1 RT [P Oy ln( y )n f n c c since they are assumed to reside in the same sublattice.

However, this can hardly be realistic when the contents ofE
1 Q Oy ln( y )] 1 G (47)j j m ions decrease to low values and the cation sublattice is

disappearing. In order to describe such effects it iswhere 8G is a quantity defined for one mole of atoms of c.c
necessary to use interaction terms through the excessIt should be noted that this modification does not affect the
Gibbs energy in Eqs. (48) and (49).total content of cations because Qy ?oy is equal toVa c

For a molten mixture of salts there will be no neutralon y y ?1. The subscript j represents all species on thec c Va
constituents or vacancies and one may takeanion sublattice, i.e. anions, neutral species and vacancies.

11 12 21 22(Na ,Ca ) (Cl ,SO ) as an example. On the otherP 4 QD 8G and D 8G are the differences between the liquidf c f n
hand, there are molten salts that can dissolve an excess ofstates of one mole of pure c or n at the actual temperature
metal. As an example, the Ca–CaF liquid can be mod-2and in the reference states. It should be remembered that

12 21 22elled with the formula (Ca ) (F ,Va ) and even withP 2D 8G formally contains also one mole of vacancies.f c 12 21 22 0(Ca ) (F ,Va ,F ) if one also likes to describe anP 2The amount of each cation, c, per mole of formula units
excess of F [28].will be y oy (2n )1Qy y 10 according to Eq. (47),c a a Va c

The molten solution between an orthosilicate andwhich is equal to Py according to Eq. (44). This is thec
its component metal is modelled ascorrect value and that is why the end-member of cation c

12 22 24 22(Ca ) (O ,SiO ,Va ) . At higher SiO contents thereP 4 2 2with vacancies was defined as Q neutral atoms of c. The
will appear more complex silica species and pure moltenamount of each anion is y oy n 5Qy which is also aa c c a
SiO may be regarded as a single, huge molecule, held2correct value. The amount of each neutral constituent is
together by covalent bonds. As an approximation, simpleQy , again a correct value.n
enough to be handled, all such complex situations areSundman [27] has discussed the excess terms. They
handled by the introduction of a hypothetical, neutralshould reduce to the ordinary ones on a binary metallic 0species, SiO [29]. For the above case, the complete model2side, y y L . This will be the case if L 5QL .A B A,B A,B:Va A,B 12 22 24 22 0will thus be (Ca ) (O ,SiO ,Va ,SiO ) and it coversP 4 2 2With y 51 and y 5y 50 Eq. (47) would reduce toVa a n
the whole composition range in the triangle Ca–CaO–

M SiO . In Al O the bonding has a considerable covalentG 5 Qy ( y D 8G 1 y D 8G ) 1 PRT [y ln( y ) 2 2 3m Va A f A B f B A A

character and the Al O –SiO liquid has been modelled2 3 21 y ln( y )] 1 y y y L 0 0B B A B Va A,B:Va simply as (Al O , SiO ) [30]. Following that suggestion,1 1.5 2
125Q[x D 8G 1 x D 8G 1 RT [x ln(x ) the CaO–Al O liquid was modelled as (Ca ,A f A B f B A A 2 3

13 22 0Al ) (O ,Al O ) and Fe O was represented by theP 1 1.5 Q 2 31 x ln(x )] 1 x x L ] (48)B B A B A,B species FeO , e.g. in the Fe–O system where the formula1.5
12 22 22 0(Fe ) (O ,Va ,Fe O ) was used [31].because here P5Q according to Eq. (44). This expression P 1 1.5 2

Mfor G thus refers to Q moles of atoms.m

The excess terms should also reduce to the ordinary
ones on a binary non-metallic side, y y L , where D andD E D,E

13. Short range order in crystalsE are two neutral species. This will be the case if L 5A:D,E

n L and L 5n L . With only neutral species onA D,E B:D,E B D,E
In reality the atoms may not be distributed at randomthe anion sublattice, y 5y 50 and P50 according to Eq.a Va

within their sublattices but be influenced by interactions(34) and Eq. (47) would reduce to
with other atoms. One talks about short range order. To

M describe such a situation one needs more independentG 5 Q( y D 8G 1 y D 8G )m D f D E f E

variables than there are independent mole or site fractions.
1 QRT [y ln( y ) 1 y ln( y )]D D E E This problem was first treated by Bethe [10] who consid-
1 ( y n 1 y n )y y L ered the probabilities for bonds between nearest neighbourA A B B D E D,E

atoms. In a disordered alloy one could work with three pair5Q[x D 8G 1 x D 8G 1 RT [x ln(x )D f D E f E D D probabilities, p , p and p , two of which are in-AA AB BB
1 x ln(x )] 1 x x L ] (49) dependent which is one more than the only independentE E D E D,E

mole fraction. In an alloy with long range order over two
Again, we obtain an expression for Q moles of atoms. It sublattices in a structure, where all nearest neighbour

should be added that, in addition to L /n 5L /n 5 bonds fall between the sublattices, one would have toA:D,E A B:D,E B
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distinguish between p and p . This addition of another an excess term as ( y y )( y y ) /y and modified it to anA:B B:A A X B X X

pair probability makes it possible to describe both long and expression equivalent to p p /y . An alternativeA:X B:X X

short range order. The energy is obtained by summation would be to write this factor as ( y y y 1y y y ) /2 andA B X B A X

over the bond energies and the configurational entropy is modify it to ( y p 1y p ) /2 which may be simpler toA B:X B A:X

obtained by considering the mixing of the bonds, using a handle in calculations.
statistical treatment today often called the quasi-chemical In an actual calculation one must determine the dis-
approximation. Kikuchi [32] developed this model further tribution over the various sublattices (i.e. long range order)
by considering larger groups of atoms and several sizes at and the non-random distribution within the sublattices (i.e.
the same time in the so-called cluster variation method short range order) by minimizing G with respect to all them

(CVM). p variables under constant composition. Thus, all theend

The compound energy formalism is basically a random p variables will be fixed and together they will representend

mixing model but can be extended to include short range long and short range order. In such a calculation it is
order by using the quasi-chemical approximation or some necessary to express the site fractions appearing in Eq.
of the features of CVM. The logical way to introduce short (52) in terms of the probabilities, which is easily done. For
range order into a compound energy model would be to two sublattices one gets relations like
consider the entities defined by the compounds (end-mem- ty 5 p 1 p (53)A A:A A:Bbers) already used in the random mixing model. One
would thus modify Eq. (2) by introducing the probabilities

Alternatively, one could work directly with site fractionsfor atomic arrangements corresponding to the end-mem-
but then one must also introduce variables representingbers, p .end short range order. For the simple case discussed here,

s.r. Sundman [34] replaced the first set of variables with theG 5Op 8G (50)m end end second one using
t uThe basic part of the entropy of mixing now comes from p 5 y y 2 ´ (54)A:A A A

the mixing of these groups of atoms
t up 5 y y 1 ´ (55)mix A:A A BS 5 2 zR Op ln( p ) (51)m end end

t up 5 y y 1 ´ (56)where z is the number of such groups per mole of formula A:A B A

units. However, this expression overestimates the entropy.
t up 5 y y 2 ´ (57)There are restrictions on the mutual arrangements of the A:A B B

groups and one should at least require that the ordinary
The short range order variable ´ is here defined asexpression for random mixing of atoms is recovered when

the probabilities take the values for random mixing, i.e.
´ 5 p p 2 p p (58)s A:B B:A A:A B:Bwhen p 5Py . Following the quasi-chemical approach,end J

as derived by Guggenheim [33] for a case with two For a more complex system such relations will be more
sublattices and all the nearest neighbour bonds falling complicated, in particular when there are more than one
between the sublattices, Sundman [34] wrote degree of freedom for short range order. It thus seems that

a general program for such calculations should be basedmix s s s sS 5 2 zR Op ln( p /Py ) 2 R OOn y ln( y )m end end J J J directly on the p variables. Such a program is not yetend
(52) available.

In order to make all nearest neighbour bonds fall
The terms in the first summation will drop out for between sublattices it would be necessary to define four

random mixing, leaving the second summation which is sublattices for the f.c.c. structure A1. For a binar alloy
the well-known expression for random mixing within each there would then be 16 p variables, p , p ,end A:A:A:A A:A:A:B

sublattice. For two sublattices one would have the four p and p , etc. If the corresponding groups ofA:A:B:A A:B:A:A

variables p , p , p and p , and their values at four atoms are regarded as tetrahedra, then one couldA:A A:B B:A B:B
t u t u t u t urandom mixing would be y y , y y , y y and y y , improve the entropy expression, Eq. (52), by using a resultA A A B B A B B

respectively. This compound energy model would be from CVM which also includes a contribution from the
identical to the corresponding quasi-chemical treatment. It mixing of pairs. This was done by Sundman and Mohri
remains to be discussed whether the p variables should [16] and they expressed the compound energies by relatingend

also be introduced into the excess terms of Eq. (5). When them to the bond energies for pairs. Their calculations
considering a two-sublattice model for ionic melts, De- were rather complicated because of the large number of
ssureault and Pelton [35] considered the case of two variables. It could be simplified if one would only be
sublattices with two ions on each and all ions of the same interested in a certain type of long range order, e.g. the L12

valency, (A,B) (X,Y) . They wrote the factor y y y in structure. However, in order to treat alloys with more1 1 A B X
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elements it is desirable to simplify the treatment further complicated to give an explicit expression for y in termsA

and such an attempt was made by Sundman [34]. of the p variables, which is necessary if they are chosenend

Following a proposal by Blander and Yosim [36] for as the independent variables when minimizing the Gibbs
ionic melts, Sundman et al. [17] recently suggested that energy. As an alternative one could choose the site

t t u uone could add the reciprocal term, y y y y L , as fractions and the short range order parameter, ´, as theA B A B A,B:A,B

an approximate description of the effect of short range independent variables in the minimization procedure. Then
order in crystalline phases with two sublattices. Thus, one one must express all the p quantities in terms of that setend

would avoid the necessity of evaluating the effect of short of variables which must be done by solving a system of
range order from the minimization of the Gibbs energy. equations like Eq. (60). As a simple example, it may be

a b 2d 2eFor the Au–Cu system they considered four sublattices and mentioned that the case (A , B ) (D , E ) yieldsP Q

introduced reciprocal terms of the form
t t u u v w p 5 y y 1 ´[y y (a 2 b)(d 2 e) 2 be] (61)y y y y y y L . A:D A D A DA B A B A A A,B:A,B:A:A

p 5 y y 1 ´[y y (a 2 b)(d 2 e) 1 bd] (62)A:E A E A E

14. Short range order in ionic melts
p 5 y y 1 ´[y y (a 2 b)(d 2 e) 1 ae] (63)B:D B D B D

Dessureault and Pelton [35] have treated short range
order in ionic melts when the cations have equal valencies p 5 y y 1 ´[y y (a 2 b)(d 2 e) 2 ad] (64)B:E B E B Eand also the anions. In that case the stoichiometric
coefficients, defined by Eqs. (43) and (44), have constant to be compared with Eqs. (54)–(57). However, for a more
values and the treatment for crystals can be applied general case this may become very complicated. It is thus
directly to a melt. Selleby and Sundman (M. Selleby and highly desirable to find a method of introducing prob-
B. Sundman, personal communication) have recently abilities in such a way that Q does not appear in the
shown how a short range order treatment can be developed primary expression for the cations. The site fractions could
from the compound energy formalism for cases with a then be expressed directly in terms of the p variablesend
mixture of valancies, even including neutral species, and using expressions corresponding to Eq. (60). The pend
with vacancies. Before discussing their method a related quantities could then be used as the set of independent
treatment based directly on Eq. (47) for random melts will variables. The problem of Q in Eq. (60) arises from its
be presented. The same type of probabilities p as beforeend introduction instead of n in Eq. (46) when Eq. (47) wasc
will be introduced in Eq. (47). derived. An obvious possibility would thus be now to

revert that modification when the p quantities areendMG 5OOp D 8G 1 Q Op D 8Gm c:a f c:a c:Va f c introduced. We would thus write the second summation in
Eq. (59) as on p D 8G , obtainingc c:Va f c1 Q Op D 8Gn f n

1 zRT [OOp ln( p /y y ) O(2n )p 1 n pc:a c:a c a a A:a A A:Va
]]]]]]]]y 5 (65)A OO(2n )p 1On p1Op ln( p /y y ) 1Op ln( p /y )] a c:a c c:Vac:Va c:Va c Va n n n

E For species on the anion sublattice we would find1 RT [P Oy ln( y ) 1 Q Oy ln( y )] 1 G (59)c c j j m

On pIt should be remembered that the subscript j represents c c:D
]]]]]]]]]]y 5 (66)Dall species in the anion sublattice whereas the subscript a OOn p 1On p 1 Q Opc c:a c c:Va n

only represents the true anions. The number of bonds per
formula unit, z, is not well defined in this case. A formula On pc c:Vaunit contains P 1 Q atoms and, if they have an average ]]]]]]]]]]y 5 (67)Va OOn p 1On p 1 Q Opcoordination number of 8, it may be reasonable to use c c:a c c:Va n

z 5 4(P 1 Q). Remembering that the subscript c:a stands
Q pNfor the end-member c a and c:Va stands for c Va we2n n 1 1 ]]]]]]]]]]y 5 (68)a c N

obtain the site fraction for a cation, A, OOn p 1On p 1 Q Opc c:a c c:Va n

O(2n )p 1 Q p but here the presence of Q does not cause much complica-a A:a A:Va
]]]]]]]]y 5 (60)A tions because Q only contains site fractions for the cations.OO(2n )p 1 Q Opa c:a c:Va It is also necessary to express the stoichiometric co-

This is a more complicated expresion than Eq. (53) efficients, P and Q, in terms of the p variables becauseend

because the stoichiometric coefficients vary. In addition, Q they appear in the ideal entropy part of Eq. (59).
contains y because it is defined as on y . It will thus be From their definitions, Eqs. (43) and (44), we findA c c
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2 Thermo-Calc software package, Sundman entered z as aOOn (2n )p 1 (n ) pc a c:a c c:Va
]]]]]]]]Q 5On y 5 (69) parameter that can be chosen freely. The model based onc c OO(2n )p 1On pa c:a c c:Va Eq. (59) after reverting the change from n to Q has notc

yet been programmed.
P 5O(2n )y 1 Qya a Va It should again be mentioned that Dessureault and

Pelton [35] took into account the effect of binary inter-OOn (2n )p 1 Q On pc a c:a c c:Va
]]]]]]]]]]5 (70) action parameters on the short range order in a reciprocalOOn p 1On p 1 Q Opc c:a c c:Va n system. As described in Section 13 this can also be done

with the compound energy formalism by substituting theSelleby and Sundman (M. Selleby and B. Sundman,
appropriate p variable for products of y in the excesspersonal communication) found another alternative by end i

terms. There are a number of ways to do this, however.comparing with an associate solution model where all the
Finally, it should again be mentioned that Blander andassociates have one atom of the anion species. In order to
Yosim [36] proposed that one could use the reciprocalmake the expression hold for the same number of atoms as
parameter to approximate the effect of short range order inbefore, they multiplied by Q, obtaining instead of Eq. (59),
ionic melts.

MG 5 Q[OOp D 8G a 1Op D 8Gm c:a f c 1 c:Va f c2n /na c

1Op D 8Gn f n 15. Summary

1 zRT [OOp ln(Q p /n y y )c:a c:a c c a The compound energy model has been developed step
by step, taking into account various complicating aspects,1Op /y y )]] 1 RT [P Oy ln( y )c:Va c Va c c

and is now capable of describing the properties of manyE
1 Q Oy ln( y )] 1 G (71)j j m different types of phases. It is thus widely used in

CALPHAD assessments although there are methods taking
In order to make the comparison with Eq. (59) easier, better account of short range order. However, they require

we can rewrite the surface of reference as more computing time and grow more complicated as the
s.r. number of sublattices and components increases. It isG 5OO(Q /n )p 8G 1 Q Op 8Gm c c:a c a c:Va c2n na c hoped that the inclusion of a simple treatment of short

range order in the compound energy formalism may be1 Q Op 8G (72)n n
sufficient for most practical applications.

The only modification of Eq. (59) is that p has beenc:a

replaced by (Q /n )p . This causes the p quantities to bec c:a c:a

quite different and that will indirectly affect the values of Acknowledgements
p and p . The following expressions will now bec:Va n

obtained for the site fractions Thanks are due to Professor Bo Sundman for frequent
and intensive discussions about the methods to account for

(1 /n )O(2n )p 1 pA a A:a A:Va short range order.]]]]]]]]y 5 (73)A OO(2n /n )p 1Opa c c:a c:Va
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